Matches in SemOpenAlex for { <https://semopenalex.org/work/W3103230033> ?p ?o ?g. }
- W3103230033 endingPage "102260" @default.
- W3103230033 startingPage "102260" @default.
- W3103230033 abstract "The dynamics of Leaf Area Index (LAI) from space is key to identify crop types and their phenology over large areas, and to characterize spatial variations within growers’ fields. However, for years remote-sensing applications have been constrained by a trade-off between the spatial and temporal resolutions. This study resolves this limitation. Over the past decade, the number of companies and organizations developing CubeSat constellations has increased. These new satellites make it possible to acquire large image collections at high spatial and temporal resolutions at a relatively low cost. However, the images obtained from CubeSat constellations frequently suffer from inconsistency in the data calibration between the different satellites within the constellation. To overcome these inconsistencies, a new method to fuse a time series of images sourced from two different satellite constellations is proposed, combining the advantages of both (i.e., the temporal, spatial and spectral resolution). This new technique was applied to fuse PlanetScope images with Sentinel-2 images, to create spectrally-consistent daily images of wheat LAI at a 3 m resolution. The daily 3 m LAI estimations were compared with 57 in-situ wheat LAI measurements taken in Australia and Israel. This approach was demonstrated to successfully estimate Green LAI (LAI before the major on-set of leaf senescence) with an R2 of 0.94 and 86% relative accuracy (RMSE of 1.37) throughout the growing season without using any ground calibration. However, both the Sentinel-2 based estimates and the fused Green LAI were underestimated at high LAI values (LAI > 3). To account for this, regression models were developed, improving the relative accuracy of the Green LAI estimations by up to a further 47% (RMSE of 0.35–0.63) in comparison with field measured LAI. The new time series fusion method is an effective tool for continuous daily monitoring of crops at high-resolution over large scales, which opens up a range of new precision agriculture applications. These high spatio-temporal resolution time-series are valuable for monitoring crop growth and health, and can improve the effectiveness of farming practices and enhance yield forecasts at the field and sub-field scales." @default.
- W3103230033 created "2020-11-23" @default.
- W3103230033 creator A5016816683 @default.
- W3103230033 creator A5020270621 @default.
- W3103230033 creator A5020598363 @default.
- W3103230033 creator A5021522078 @default.
- W3103230033 creator A5048495406 @default.
- W3103230033 creator A5064090994 @default.
- W3103230033 creator A5068568126 @default.
- W3103230033 creator A5083197786 @default.
- W3103230033 date "2021-04-01" @default.
- W3103230033 modified "2023-10-17" @default.
- W3103230033 title "Fusion of Sentinel-2 and PlanetScope time-series data into daily 3 m surface reflectance and wheat LAI monitoring" @default.
- W3103230033 cites W1974647672 @default.
- W3103230033 cites W1978815957 @default.
- W3103230033 cites W1985555755 @default.
- W3103230033 cites W1987997875 @default.
- W3103230033 cites W1998776407 @default.
- W3103230033 cites W2000102737 @default.
- W3103230033 cites W2012686349 @default.
- W3103230033 cites W2014153000 @default.
- W3103230033 cites W2017555282 @default.
- W3103230033 cites W2018170267 @default.
- W3103230033 cites W2021662310 @default.
- W3103230033 cites W2025967407 @default.
- W3103230033 cites W2043950171 @default.
- W3103230033 cites W2052169152 @default.
- W3103230033 cites W2056435747 @default.
- W3103230033 cites W2073119306 @default.
- W3103230033 cites W2088603520 @default.
- W3103230033 cites W2089441588 @default.
- W3103230033 cites W2093647714 @default.
- W3103230033 cites W2094677081 @default.
- W3103230033 cites W2108806738 @default.
- W3103230033 cites W2109006150 @default.
- W3103230033 cites W2111626115 @default.
- W3103230033 cites W2119582019 @default.
- W3103230033 cites W2121401610 @default.
- W3103230033 cites W2125397877 @default.
- W3103230033 cites W2146501057 @default.
- W3103230033 cites W2149813070 @default.
- W3103230033 cites W2161815745 @default.
- W3103230033 cites W2167869331 @default.
- W3103230033 cites W221493477 @default.
- W3103230033 cites W2295815147 @default.
- W3103230033 cites W2342430100 @default.
- W3103230033 cites W2373277036 @default.
- W3103230033 cites W2398973817 @default.
- W3103230033 cites W2514604994 @default.
- W3103230033 cites W2523311857 @default.
- W3103230033 cites W2532003389 @default.
- W3103230033 cites W2600037548 @default.
- W3103230033 cites W2601113219 @default.
- W3103230033 cites W2609044008 @default.
- W3103230033 cites W2612890152 @default.
- W3103230033 cites W2762524281 @default.
- W3103230033 cites W2766138163 @default.
- W3103230033 cites W2771841295 @default.
- W3103230033 cites W2791364611 @default.
- W3103230033 cites W2793603191 @default.
- W3103230033 cites W2804526550 @default.
- W3103230033 cites W2805837072 @default.
- W3103230033 cites W2808125284 @default.
- W3103230033 cites W2809305579 @default.
- W3103230033 cites W2893700198 @default.
- W3103230033 cites W2907047183 @default.
- W3103230033 cites W2912151952 @default.
- W3103230033 cites W2915777673 @default.
- W3103230033 cites W2932791400 @default.
- W3103230033 cites W2943316090 @default.
- W3103230033 cites W2963401764 @default.
- W3103230033 cites W2973132936 @default.
- W3103230033 cites W2984542666 @default.
- W3103230033 cites W2987822860 @default.
- W3103230033 cites W2997248273 @default.
- W3103230033 cites W4248268077 @default.
- W3103230033 cites W612661449 @default.
- W3103230033 doi "https://doi.org/10.1016/j.jag.2020.102260" @default.
- W3103230033 hasPublicationYear "2021" @default.
- W3103230033 type Work @default.
- W3103230033 sameAs 3103230033 @default.
- W3103230033 citedByCount "34" @default.
- W3103230033 countsByYear W31032300332021 @default.
- W3103230033 countsByYear W31032300332022 @default.
- W3103230033 countsByYear W31032300332023 @default.
- W3103230033 crossrefType "journal-article" @default.
- W3103230033 hasAuthorship W3103230033A5016816683 @default.
- W3103230033 hasAuthorship W3103230033A5020270621 @default.
- W3103230033 hasAuthorship W3103230033A5020598363 @default.
- W3103230033 hasAuthorship W3103230033A5021522078 @default.
- W3103230033 hasAuthorship W3103230033A5048495406 @default.
- W3103230033 hasAuthorship W3103230033A5064090994 @default.
- W3103230033 hasAuthorship W3103230033A5068568126 @default.
- W3103230033 hasAuthorship W3103230033A5083197786 @default.
- W3103230033 hasBestOaLocation W31032300331 @default.
- W3103230033 hasConcept C119666444 @default.
- W3103230033 hasConcept C121332964 @default.
- W3103230033 hasConcept C1276947 @default.