Matches in SemOpenAlex for { <https://semopenalex.org/work/W3103233043> ?p ?o ?g. }
- W3103233043 endingPage "e19489" @default.
- W3103233043 startingPage "e19489" @default.
- W3103233043 abstract "Background Computerized physician order entry (CPOE) systems are incorporated into clinical decision support systems (CDSSs) to reduce medication errors and improve patient safety. Automatic alerts generated from CDSSs can directly assist physicians in making useful clinical decisions and can help shape prescribing behavior. Multiple studies reported that approximately 90%-96% of alerts are overridden by physicians, which raises questions about the effectiveness of CDSSs. There is intense interest in developing sophisticated methods to combat alert fatigue, but there is no consensus on the optimal approaches so far. Objective Our objective was to develop machine learning prediction models to predict physicians’ responses in order to reduce alert fatigue from disease medication–related CDSSs. Methods We collected data from a disease medication–related CDSS from a university teaching hospital in Taiwan. We considered prescriptions that triggered alerts in the CDSS between August 2018 and May 2019. Machine learning models, such as artificial neural network (ANN), random forest (RF), naïve Bayes (NB), gradient boosting (GB), and support vector machine (SVM), were used to develop prediction models. The data were randomly split into training (80%) and testing (20%) datasets. Results A total of 6453 prescriptions were used in our model. The ANN machine learning prediction model demonstrated excellent discrimination (area under the receiver operating characteristic curve [AUROC] 0.94; accuracy 0.85), whereas the RF, NB, GB, and SVM models had AUROCs of 0.93, 0.91, 0.91, and 0.80, respectively. The sensitivity and specificity of the ANN model were 0.87 and 0.83, respectively. Conclusions In this study, ANN showed substantially better performance in predicting individual physician responses to an alert from a disease medication–related CDSS, as compared to the other models. To our knowledge, this is the first study to use machine learning models to predict physician responses to alerts; furthermore, it can help to develop sophisticated CDSSs in real-world clinical settings." @default.
- W3103233043 created "2020-11-23" @default.
- W3103233043 creator A5008438843 @default.
- W3103233043 creator A5013242165 @default.
- W3103233043 creator A5045320870 @default.
- W3103233043 creator A5058108838 @default.
- W3103233043 creator A5071212778 @default.
- W3103233043 creator A5085663133 @default.
- W3103233043 date "2020-11-19" @default.
- W3103233043 modified "2023-10-16" @default.
- W3103233043 title "Machine Learning Approach to Reduce Alert Fatigue Using a Disease Medication–Related Clinical Decision Support System: Model Development and Validation" @default.
- W3103233043 cites W1937346126 @default.
- W3103233043 cites W1985254283 @default.
- W3103233043 cites W1999247002 @default.
- W3103233043 cites W2008174801 @default.
- W3103233043 cites W2009190245 @default.
- W3103233043 cites W2011533104 @default.
- W3103233043 cites W2041854656 @default.
- W3103233043 cites W2044859414 @default.
- W3103233043 cites W2051505746 @default.
- W3103233043 cites W2088794999 @default.
- W3103233043 cites W2101644441 @default.
- W3103233043 cites W2106619657 @default.
- W3103233043 cites W2110922423 @default.
- W3103233043 cites W2111489845 @default.
- W3103233043 cites W2128124510 @default.
- W3103233043 cites W2128688562 @default.
- W3103233043 cites W2164590486 @default.
- W3103233043 cites W2168367580 @default.
- W3103233043 cites W2168382910 @default.
- W3103233043 cites W2169631623 @default.
- W3103233043 cites W2242491276 @default.
- W3103233043 cites W2262116908 @default.
- W3103233043 cites W2340216362 @default.
- W3103233043 cites W2409124292 @default.
- W3103233043 cites W2410800783 @default.
- W3103233043 cites W2522034247 @default.
- W3103233043 cites W2765920053 @default.
- W3103233043 cites W2790340339 @default.
- W3103233043 cites W2804467287 @default.
- W3103233043 cites W2809239485 @default.
- W3103233043 cites W2891105177 @default.
- W3103233043 cites W2912750253 @default.
- W3103233043 cites W2914504713 @default.
- W3103233043 cites W2937218478 @default.
- W3103233043 cites W2976949394 @default.
- W3103233043 cites W2996547294 @default.
- W3103233043 cites W3014693099 @default.
- W3103233043 cites W3014716957 @default.
- W3103233043 cites W3045593930 @default.
- W3103233043 doi "https://doi.org/10.2196/19489" @default.
- W3103233043 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7714650" @default.
- W3103233043 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33211018" @default.
- W3103233043 hasPublicationYear "2020" @default.
- W3103233043 type Work @default.
- W3103233043 sameAs 3103233043 @default.
- W3103233043 citedByCount "14" @default.
- W3103233043 countsByYear W31032330432021 @default.
- W3103233043 countsByYear W31032330432022 @default.
- W3103233043 countsByYear W31032330432023 @default.
- W3103233043 crossrefType "journal-article" @default.
- W3103233043 hasAuthorship W3103233043A5008438843 @default.
- W3103233043 hasAuthorship W3103233043A5013242165 @default.
- W3103233043 hasAuthorship W3103233043A5045320870 @default.
- W3103233043 hasAuthorship W3103233043A5058108838 @default.
- W3103233043 hasAuthorship W3103233043A5071212778 @default.
- W3103233043 hasAuthorship W3103233043A5085663133 @default.
- W3103233043 hasBestOaLocation W31032330431 @default.
- W3103233043 hasConcept C107327155 @default.
- W3103233043 hasConcept C119857082 @default.
- W3103233043 hasConcept C12267149 @default.
- W3103233043 hasConcept C154945302 @default.
- W3103233043 hasConcept C169258074 @default.
- W3103233043 hasConcept C2426938 @default.
- W3103233043 hasConcept C41008148 @default.
- W3103233043 hasConcept C50644808 @default.
- W3103233043 hasConcept C52001869 @default.
- W3103233043 hasConcept C58471807 @default.
- W3103233043 hasConcept C63527458 @default.
- W3103233043 hasConcept C70153297 @default.
- W3103233043 hasConcept C71924100 @default.
- W3103233043 hasConcept C84525736 @default.
- W3103233043 hasConcept C98274493 @default.
- W3103233043 hasConceptScore W3103233043C107327155 @default.
- W3103233043 hasConceptScore W3103233043C119857082 @default.
- W3103233043 hasConceptScore W3103233043C12267149 @default.
- W3103233043 hasConceptScore W3103233043C154945302 @default.
- W3103233043 hasConceptScore W3103233043C169258074 @default.
- W3103233043 hasConceptScore W3103233043C2426938 @default.
- W3103233043 hasConceptScore W3103233043C41008148 @default.
- W3103233043 hasConceptScore W3103233043C50644808 @default.
- W3103233043 hasConceptScore W3103233043C52001869 @default.
- W3103233043 hasConceptScore W3103233043C58471807 @default.
- W3103233043 hasConceptScore W3103233043C63527458 @default.
- W3103233043 hasConceptScore W3103233043C70153297 @default.
- W3103233043 hasConceptScore W3103233043C71924100 @default.
- W3103233043 hasConceptScore W3103233043C84525736 @default.
- W3103233043 hasConceptScore W3103233043C98274493 @default.