Matches in SemOpenAlex for { <https://semopenalex.org/work/W3103249532> ?p ?o ?g. }
- W3103249532 endingPage "16966" @default.
- W3103249532 startingPage "16952" @default.
- W3103249532 abstract "Amyloid beta (Aβ) peptides are notorious for their involvement in Alzheimer’s disease (AD), by virtue of their propensity to aggregate to form oligomers, fibrils, and eventually plaques in the brain. Nevertheless, they appear to be essential for correct neurophysiology on the synaptic level and may have additional functions including antimicrobial activity, sealing the blood–brain barrier, promotion of recovery from brain injury, and even tumor suppression. Aβ peptides are also avid copper chelators, and coincidentally copper is significantly dysregulated in the AD brain. Copper (Cu) is released in significant amounts during calcium signaling at the synaptic membrane. Aβ peptides may have a role in maintaining synaptic Cu homeostasis, including as a scavenger for redox-active Cu and as a chaperone for clearing Cu from the synaptic cleft. Here, we employed the Aβ1–16 and Aβ4–16 peptides as well-established non-aggregating models of major Aβ species in healthy and AD brains, and the Ctr1–14 peptide as a model for the extracellular domain of the human cellular copper transporter protein (Ctr1). With these model peptides and a number of spectroscopic techniques, we investigated whether the Cu complexes of Aβ peptides could provide Ctr1 with either Cu(II) or Cu(I). We found that Aβ1–16 fully and rapidly delivered Cu(II) to Ctr1–14 along the affinity gradient. Such delivery was only partial for the Aβ4–16/Ctr1–14 pair, in agreement with the higher complex stability for the former peptide. Moreover, the reaction was very slow and took ca. 40 h to reach equilibrium under the given experimental conditions. In either case of Cu(II) exchange, no intermediate (ternary) species were present in detectable amounts. In contrast, both Aβ species released Cu(I) to Ctr1–14 rapidly and in a quantitative fashion, but ternary intermediate species were detected in the analysis of XAS data. The results presented here are the first direct evidence of a Cu(I) and Cu(II) transfer between the human Ctr1 and Aβ model peptides. These results are discussed in terms of the fundamental difference between the peptides’ Cu(II) complexes (pleiotropic ensemble of open structures of Aβ1–16 vs the rigid closed-ring system of amino-terminal Cu/Ni binding Aβ4–16) and the similarity of their Cu(I) complexes (both anchored at the tandem His13/His14, bis-His motif). These results indicate that Cu(I) may be more feasible than Cu(II) as the cargo for copper clearance from the synaptic cleft by Aβ peptides and its delivery to Ctr1. The arguments in favor of Cu(I) include the fact that cellular Cu export and uptake proteins (ATPase7A/B and Ctr1, respectively) specifically transport Cu(I), the abundance of extracellular ascorbate reducing agent in the brain, and evidence of a potential associative (hand-off) mechanism of Cu(I) transfer that may mirror the mechanisms of intracellular Cu chaperone proteins." @default.
- W3103249532 created "2020-11-23" @default.
- W3103249532 creator A5001039339 @default.
- W3103249532 creator A5011193418 @default.
- W3103249532 creator A5015241918 @default.
- W3103249532 creator A5017705195 @default.
- W3103249532 creator A5053433858 @default.
- W3103249532 creator A5054124649 @default.
- W3103249532 creator A5054795737 @default.
- W3103249532 creator A5061183596 @default.
- W3103249532 creator A5069623738 @default.
- W3103249532 creator A5080296967 @default.
- W3103249532 creator A5084944997 @default.
- W3103249532 date "2020-11-19" @default.
- W3103249532 modified "2023-10-14" @default.
- W3103249532 title "Exploration of the Potential Role for Aβ in Delivery of Extracellular Copper to Ctr1" @default.
- W3103249532 cites W1201348515 @default.
- W3103249532 cites W1963712466 @default.
- W3103249532 cites W1967889181 @default.
- W3103249532 cites W1973498874 @default.
- W3103249532 cites W1985786980 @default.
- W3103249532 cites W1994007675 @default.
- W3103249532 cites W2001221518 @default.
- W3103249532 cites W2005483591 @default.
- W3103249532 cites W2009565005 @default.
- W3103249532 cites W2012031493 @default.
- W3103249532 cites W2013726957 @default.
- W3103249532 cites W2020582877 @default.
- W3103249532 cites W2022830173 @default.
- W3103249532 cites W2026536857 @default.
- W3103249532 cites W2029941316 @default.
- W3103249532 cites W2040506379 @default.
- W3103249532 cites W2040650067 @default.
- W3103249532 cites W2044627978 @default.
- W3103249532 cites W2044755714 @default.
- W3103249532 cites W2045197448 @default.
- W3103249532 cites W2062820102 @default.
- W3103249532 cites W2068853659 @default.
- W3103249532 cites W2085271736 @default.
- W3103249532 cites W2088287006 @default.
- W3103249532 cites W2090165460 @default.
- W3103249532 cites W2090718260 @default.
- W3103249532 cites W2095681573 @default.
- W3103249532 cites W2097753140 @default.
- W3103249532 cites W2098826558 @default.
- W3103249532 cites W2099390250 @default.
- W3103249532 cites W2101434995 @default.
- W3103249532 cites W2103378158 @default.
- W3103249532 cites W2104017463 @default.
- W3103249532 cites W2119023359 @default.
- W3103249532 cites W2119586900 @default.
- W3103249532 cites W2124634759 @default.
- W3103249532 cites W2130002263 @default.
- W3103249532 cites W2221424638 @default.
- W3103249532 cites W2230074349 @default.
- W3103249532 cites W2315760675 @default.
- W3103249532 cites W2319902168 @default.
- W3103249532 cites W2327309337 @default.
- W3103249532 cites W2407359553 @default.
- W3103249532 cites W2415537956 @default.
- W3103249532 cites W2463461150 @default.
- W3103249532 cites W2528880173 @default.
- W3103249532 cites W2582260863 @default.
- W3103249532 cites W2614146430 @default.
- W3103249532 cites W2735897990 @default.
- W3103249532 cites W2753691082 @default.
- W3103249532 cites W2765459934 @default.
- W3103249532 cites W2770253475 @default.
- W3103249532 cites W2784012720 @default.
- W3103249532 cites W2793307595 @default.
- W3103249532 cites W2793412161 @default.
- W3103249532 cites W2802918776 @default.
- W3103249532 cites W2804745360 @default.
- W3103249532 cites W2805430790 @default.
- W3103249532 cites W2888552223 @default.
- W3103249532 cites W2896156253 @default.
- W3103249532 cites W2897884254 @default.
- W3103249532 cites W2898176350 @default.
- W3103249532 cites W2901659109 @default.
- W3103249532 cites W2906127573 @default.
- W3103249532 cites W2955757641 @default.
- W3103249532 cites W2958150988 @default.
- W3103249532 cites W2969857868 @default.
- W3103249532 cites W2982562529 @default.
- W3103249532 cites W2991919636 @default.
- W3103249532 cites W3014469095 @default.
- W3103249532 cites W3015125765 @default.
- W3103249532 doi "https://doi.org/10.1021/acs.inorgchem.0c02100" @default.
- W3103249532 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33211469" @default.
- W3103249532 hasPublicationYear "2020" @default.
- W3103249532 type Work @default.
- W3103249532 sameAs 3103249532 @default.
- W3103249532 citedByCount "5" @default.
- W3103249532 countsByYear W31032495322021 @default.
- W3103249532 countsByYear W31032495322022 @default.
- W3103249532 countsByYear W31032495322023 @default.
- W3103249532 crossrefType "journal-article" @default.
- W3103249532 hasAuthorship W3103249532A5001039339 @default.