Matches in SemOpenAlex for { <https://semopenalex.org/work/W3103291281> ?p ?o ?g. }
- W3103291281 endingPage "269" @default.
- W3103291281 startingPage "249" @default.
- W3103291281 abstract "Abstract Sentiment analysis is directly affected by compositional phenomena in language that act on the prior polarity of the words and phrases found in the text. Negation is the most prevalent of these phenomena, and in order to correctly predict sentiment, a classifier must be able to identify negation and disentangle the effect that its scope has on the final polarity of a text. This paper proposes a multi-task approach to explicitly incorporate information about negation in sentiment analysis, which we show outperforms learning negation implicitly in an end-to-end manner. We describe our approach, a cascading and hierarchical neural architecture with selective sharing of Long Short-term Memory layers, and show that explicitly training the model with negation as an auxiliary task helps improve the main task of sentiment analysis. The effect is demonstrated across several different standard English-language data sets for both tasks, and we analyze several aspects of our system related to its performance, varying types and amounts of input data and different multi-task setups." @default.
- W3103291281 created "2020-11-23" @default.
- W3103291281 creator A5076959376 @default.
- W3103291281 creator A5080146945 @default.
- W3103291281 creator A5080614776 @default.
- W3103291281 date "2020-11-11" @default.
- W3103291281 modified "2023-10-13" @default.
- W3103291281 title "Improving sentiment analysis with multi-task learning of negation" @default.
- W3103291281 cites W1961993270 @default.
- W3103291281 cites W1963753246 @default.
- W3103291281 cites W1982464493 @default.
- W3103291281 cites W2032021697 @default.
- W3103291281 cites W2035703356 @default.
- W3103291281 cites W2048658075 @default.
- W3103291281 cites W2057399676 @default.
- W3103291281 cites W2063596712 @default.
- W3103291281 cites W2079735306 @default.
- W3103291281 cites W2084046180 @default.
- W3103291281 cites W2105827650 @default.
- W3103291281 cites W2119981693 @default.
- W3103291281 cites W2141179513 @default.
- W3103291281 cites W2155328222 @default.
- W3103291281 cites W2160660844 @default.
- W3103291281 cites W2166706824 @default.
- W3103291281 cites W2250374929 @default.
- W3103291281 cites W2250473257 @default.
- W3103291281 cites W2250879510 @default.
- W3103291281 cites W2251332263 @default.
- W3103291281 cites W2508309896 @default.
- W3103291281 cites W2516255829 @default.
- W3103291281 cites W2566847560 @default.
- W3103291281 cites W2590925815 @default.
- W3103291281 cites W2592170186 @default.
- W3103291281 cites W2608018997 @default.
- W3103291281 cites W2739897331 @default.
- W3103291281 cites W2740027944 @default.
- W3103291281 cites W2760314189 @default.
- W3103291281 cites W2799100448 @default.
- W3103291281 cites W2890407764 @default.
- W3103291281 cites W2892080636 @default.
- W3103291281 cites W2900120976 @default.
- W3103291281 cites W2962739339 @default.
- W3103291281 cites W2963026768 @default.
- W3103291281 cites W2963168538 @default.
- W3103291281 cites W2963355447 @default.
- W3103291281 cites W2963917673 @default.
- W3103291281 cites W2964094426 @default.
- W3103291281 cites W2964139237 @default.
- W3103291281 cites W2966182616 @default.
- W3103291281 cites W2972573244 @default.
- W3103291281 cites W3103291281 @default.
- W3103291281 cites W3106003309 @default.
- W3103291281 cites W3209042722 @default.
- W3103291281 cites W4205184193 @default.
- W3103291281 cites W4210984920 @default.
- W3103291281 cites W630883834 @default.
- W3103291281 doi "https://doi.org/10.1017/s1351324920000510" @default.
- W3103291281 hasPublicationYear "2020" @default.
- W3103291281 type Work @default.
- W3103291281 sameAs 3103291281 @default.
- W3103291281 citedByCount "17" @default.
- W3103291281 countsByYear W31032912812020 @default.
- W3103291281 countsByYear W31032912812021 @default.
- W3103291281 countsByYear W31032912812022 @default.
- W3103291281 countsByYear W31032912812023 @default.
- W3103291281 crossrefType "journal-article" @default.
- W3103291281 hasAuthorship W3103291281A5076959376 @default.
- W3103291281 hasAuthorship W3103291281A5080146945 @default.
- W3103291281 hasAuthorship W3103291281A5080614776 @default.
- W3103291281 hasBestOaLocation W31032912812 @default.
- W3103291281 hasConcept C1491633281 @default.
- W3103291281 hasConcept C154945302 @default.
- W3103291281 hasConcept C162324750 @default.
- W3103291281 hasConcept C187736073 @default.
- W3103291281 hasConcept C199360897 @default.
- W3103291281 hasConcept C204321447 @default.
- W3103291281 hasConcept C2185349 @default.
- W3103291281 hasConcept C2777361361 @default.
- W3103291281 hasConcept C2780451532 @default.
- W3103291281 hasConcept C28006648 @default.
- W3103291281 hasConcept C41008148 @default.
- W3103291281 hasConcept C54355233 @default.
- W3103291281 hasConcept C66402592 @default.
- W3103291281 hasConcept C86803240 @default.
- W3103291281 hasConcept C95623464 @default.
- W3103291281 hasConceptScore W3103291281C1491633281 @default.
- W3103291281 hasConceptScore W3103291281C154945302 @default.
- W3103291281 hasConceptScore W3103291281C162324750 @default.
- W3103291281 hasConceptScore W3103291281C187736073 @default.
- W3103291281 hasConceptScore W3103291281C199360897 @default.
- W3103291281 hasConceptScore W3103291281C204321447 @default.
- W3103291281 hasConceptScore W3103291281C2185349 @default.
- W3103291281 hasConceptScore W3103291281C2777361361 @default.
- W3103291281 hasConceptScore W3103291281C2780451532 @default.
- W3103291281 hasConceptScore W3103291281C28006648 @default.
- W3103291281 hasConceptScore W3103291281C41008148 @default.
- W3103291281 hasConceptScore W3103291281C54355233 @default.
- W3103291281 hasConceptScore W3103291281C66402592 @default.