Matches in SemOpenAlex for { <https://semopenalex.org/work/W3103294501> ?p ?o ?g. }
- W3103294501 endingPage "3764" @default.
- W3103294501 startingPage "3764" @default.
- W3103294501 abstract "Automated extraction of buildings from earth observation (EO) data has long been a fundamental but challenging research topic. Combining data from different modalities (e.g., high-resolution imagery (HRI) and light detection and ranging (LiDAR) data) has shown great potential in building extraction. Recent studies have examined the role that deep learning (DL) could play in both multimodal data fusion and urban object extraction. However, DL-based multimodal fusion networks may encounter the following limitations: (1) the individual modal and cross-modal features, which we consider both useful and important for final prediction, cannot be sufficiently learned and utilized and (2) the multimodal features are fused by a simple summation or concatenation, which appears ambiguous in selecting cross-modal complementary information. In this paper, we address these two limitations by proposing a hybrid attention-aware fusion network (HAFNet) for building extraction. It consists of RGB-specific, digital surface model (DSM)-specific, and cross-modal streams to sufficiently learn and utilize both individual modal and cross-modal features. Furthermore, an attention-aware multimodal fusion block (Att-MFBlock) was introduced to overcome the fusion problem by adaptively selecting and combining complementary features from each modality. Extensive experiments conducted on two publicly available datasets demonstrated the effectiveness of the proposed HAFNet for building extraction." @default.
- W3103294501 created "2020-11-23" @default.
- W3103294501 creator A5003677173 @default.
- W3103294501 creator A5012507645 @default.
- W3103294501 creator A5018243278 @default.
- W3103294501 creator A5038321349 @default.
- W3103294501 creator A5044321404 @default.
- W3103294501 creator A5063646573 @default.
- W3103294501 creator A5078483183 @default.
- W3103294501 date "2020-11-16" @default.
- W3103294501 modified "2023-10-17" @default.
- W3103294501 title "A Hybrid Attention-Aware Fusion Network (HAFNet) for Building Extraction from High-Resolution Imagery and LiDAR Data" @default.
- W3103294501 cites W1526295910 @default.
- W3103294501 cites W1958291604 @default.
- W3103294501 cites W2052060966 @default.
- W3103294501 cites W2092120745 @default.
- W3103294501 cites W2134345313 @default.
- W3103294501 cites W2165796970 @default.
- W3103294501 cites W2344125013 @default.
- W3103294501 cites W2412782625 @default.
- W3103294501 cites W2419966649 @default.
- W3103294501 cites W2520578523 @default.
- W3103294501 cites W2623518586 @default.
- W3103294501 cites W2727875856 @default.
- W3103294501 cites W2752782242 @default.
- W3103294501 cites W2780835727 @default.
- W3103294501 cites W2809426059 @default.
- W3103294501 cites W2888358068 @default.
- W3103294501 cites W2900094710 @default.
- W3103294501 cites W2909381593 @default.
- W3103294501 cites W2912114399 @default.
- W3103294501 cites W2924260171 @default.
- W3103294501 cites W2937933649 @default.
- W3103294501 cites W2963659230 @default.
- W3103294501 cites W2963995737 @default.
- W3103294501 cites W2976120863 @default.
- W3103294501 cites W2979363529 @default.
- W3103294501 cites W2981683113 @default.
- W3103294501 cites W2993017798 @default.
- W3103294501 cites W3021297918 @default.
- W3103294501 cites W3022397457 @default.
- W3103294501 cites W3024506755 @default.
- W3103294501 cites W3025582806 @default.
- W3103294501 cites W3040777427 @default.
- W3103294501 cites W3045928185 @default.
- W3103294501 cites W3083738670 @default.
- W3103294501 cites W3090630740 @default.
- W3103294501 doi "https://doi.org/10.3390/rs12223764" @default.
- W3103294501 hasPublicationYear "2020" @default.
- W3103294501 type Work @default.
- W3103294501 sameAs 3103294501 @default.
- W3103294501 citedByCount "22" @default.
- W3103294501 countsByYear W31032945012021 @default.
- W3103294501 countsByYear W31032945012022 @default.
- W3103294501 countsByYear W31032945012023 @default.
- W3103294501 crossrefType "journal-article" @default.
- W3103294501 hasAuthorship W3103294501A5003677173 @default.
- W3103294501 hasAuthorship W3103294501A5012507645 @default.
- W3103294501 hasAuthorship W3103294501A5018243278 @default.
- W3103294501 hasAuthorship W3103294501A5038321349 @default.
- W3103294501 hasAuthorship W3103294501A5044321404 @default.
- W3103294501 hasAuthorship W3103294501A5063646573 @default.
- W3103294501 hasAuthorship W3103294501A5078483183 @default.
- W3103294501 hasBestOaLocation W31032945011 @default.
- W3103294501 hasConcept C114614502 @default.
- W3103294501 hasConcept C124101348 @default.
- W3103294501 hasConcept C138885662 @default.
- W3103294501 hasConcept C153180895 @default.
- W3103294501 hasConcept C154945302 @default.
- W3103294501 hasConcept C158525013 @default.
- W3103294501 hasConcept C185592680 @default.
- W3103294501 hasConcept C188027245 @default.
- W3103294501 hasConcept C2780226545 @default.
- W3103294501 hasConcept C33923547 @default.
- W3103294501 hasConcept C33954974 @default.
- W3103294501 hasConcept C41008148 @default.
- W3103294501 hasConcept C41895202 @default.
- W3103294501 hasConcept C52622490 @default.
- W3103294501 hasConcept C71139939 @default.
- W3103294501 hasConcept C82990744 @default.
- W3103294501 hasConcept C87619178 @default.
- W3103294501 hasConceptScore W3103294501C114614502 @default.
- W3103294501 hasConceptScore W3103294501C124101348 @default.
- W3103294501 hasConceptScore W3103294501C138885662 @default.
- W3103294501 hasConceptScore W3103294501C153180895 @default.
- W3103294501 hasConceptScore W3103294501C154945302 @default.
- W3103294501 hasConceptScore W3103294501C158525013 @default.
- W3103294501 hasConceptScore W3103294501C185592680 @default.
- W3103294501 hasConceptScore W3103294501C188027245 @default.
- W3103294501 hasConceptScore W3103294501C2780226545 @default.
- W3103294501 hasConceptScore W3103294501C33923547 @default.
- W3103294501 hasConceptScore W3103294501C33954974 @default.
- W3103294501 hasConceptScore W3103294501C41008148 @default.
- W3103294501 hasConceptScore W3103294501C41895202 @default.
- W3103294501 hasConceptScore W3103294501C52622490 @default.
- W3103294501 hasConceptScore W3103294501C71139939 @default.
- W3103294501 hasConceptScore W3103294501C82990744 @default.
- W3103294501 hasConceptScore W3103294501C87619178 @default.