Matches in SemOpenAlex for { <https://semopenalex.org/work/W3103330131> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W3103330131 endingPage "199709" @default.
- W3103330131 startingPage "199696" @default.
- W3103330131 abstract "Excessive psychological pressure, long working hours, and excessive labor intensity can make people exhausted and affect people's cognition and motor function. Detecting the fatigue state of athletes can prevent excessive fatigue and sports injuries. This article chooses the adaptive median filter method to smooth the image and remove the noise, and uses the adaptive threshold light equalization method to adjust the image's light equalization. According to the admission and rejection criteria of the Sequential Forward Floating Selection (SFFS) algorithm, different feature parameter combinations are used to build a fatigue motion detection model based on Support Vector Machine (SVM). Taking the classification performance of the built SVM detection model as the evaluation criterion, and using the sequence floating forward selection algorithm as the search strategy, the fatigue characteristic parameter optimization selection algorithm is established. The algorithm is used to reduce the dimensionality of the full set of fatigue feature parameters, and the optimal feature subset of fatigue motion is extracted. Based on the paired sample t-test and the analysis of variance method, it analyzes and quantifies the comprehensive influence of individual athlete differences and fatigue exercise on sports behavior and eye movement characteristics. An adaptive detection model is built based on personality parameters, and the design idea of the fatigue feature extraction network is analyzed. In order to make full use of the information of the feature vector output by the fully connected layer, the new network designs two fully connected layers to extract feature vectors. Two types are output by the Softmax loss function, which can directly determine whether the athlete is in a fatigue state. Based on the PERCLOS (Percentage of Eyelid Closure Over the Pupil over time) criterion, this article completes the construction of the fatigue motion sample set, and classifies the face images with more than 80% eyes closed as fatigue samples. This method can apply the PERCLOS criterion to the training of the convolutional neural network, so that it can recognize the fatigue state of the face based on the comprehensive facial features and improve the robustness of the algorithm." @default.
- W3103330131 created "2020-11-23" @default.
- W3103330131 creator A5045337789 @default.
- W3103330131 creator A5048325130 @default.
- W3103330131 date "2020-01-01" @default.
- W3103330131 modified "2023-10-02" @default.
- W3103330131 title "Exercise Fatigue Detection Algorithm Based on Video Image Information Extraction" @default.
- W3103330131 cites W1066329845 @default.
- W3103330131 cites W1209748798 @default.
- W3103330131 cites W1837480624 @default.
- W3103330131 cites W1992082721 @default.
- W3103330131 cites W1997998434 @default.
- W3103330131 cites W2004871065 @default.
- W3103330131 cites W2022253241 @default.
- W3103330131 cites W2028570517 @default.
- W3103330131 cites W2030084517 @default.
- W3103330131 cites W2062867640 @default.
- W3103330131 cites W2097840012 @default.
- W3103330131 cites W2098329693 @default.
- W3103330131 cites W2114193021 @default.
- W3103330131 cites W2147376995 @default.
- W3103330131 cites W2164689416 @default.
- W3103330131 cites W2207276209 @default.
- W3103330131 cites W2319319650 @default.
- W3103330131 cites W2498230662 @default.
- W3103330131 cites W2550476060 @default.
- W3103330131 cites W2569302892 @default.
- W3103330131 cites W2581936448 @default.
- W3103330131 cites W2582344767 @default.
- W3103330131 cites W2605126039 @default.
- W3103330131 cites W2611349832 @default.
- W3103330131 cites W2736389237 @default.
- W3103330131 cites W2761881812 @default.
- W3103330131 cites W2800663094 @default.
- W3103330131 cites W2887859967 @default.
- W3103330131 cites W2888688605 @default.
- W3103330131 cites W2890584425 @default.
- W3103330131 cites W2903515384 @default.
- W3103330131 cites W2905975571 @default.
- W3103330131 cites W2914520563 @default.
- W3103330131 cites W2918876655 @default.
- W3103330131 doi "https://doi.org/10.1109/access.2020.3023648" @default.
- W3103330131 hasPublicationYear "2020" @default.
- W3103330131 type Work @default.
- W3103330131 sameAs 3103330131 @default.
- W3103330131 citedByCount "18" @default.
- W3103330131 countsByYear W31033301312021 @default.
- W3103330131 countsByYear W31033301312022 @default.
- W3103330131 countsByYear W31033301312023 @default.
- W3103330131 crossrefType "journal-article" @default.
- W3103330131 hasAuthorship W3103330131A5045337789 @default.
- W3103330131 hasAuthorship W3103330131A5048325130 @default.
- W3103330131 hasBestOaLocation W31033301311 @default.
- W3103330131 hasConcept C11413529 @default.
- W3103330131 hasConcept C12267149 @default.
- W3103330131 hasConcept C138885662 @default.
- W3103330131 hasConcept C148483581 @default.
- W3103330131 hasConcept C153180895 @default.
- W3103330131 hasConcept C154945302 @default.
- W3103330131 hasConcept C188441871 @default.
- W3103330131 hasConcept C2776401178 @default.
- W3103330131 hasConcept C41008148 @default.
- W3103330131 hasConcept C41895202 @default.
- W3103330131 hasConcept C50644808 @default.
- W3103330131 hasConcept C52622490 @default.
- W3103330131 hasConceptScore W3103330131C11413529 @default.
- W3103330131 hasConceptScore W3103330131C12267149 @default.
- W3103330131 hasConceptScore W3103330131C138885662 @default.
- W3103330131 hasConceptScore W3103330131C148483581 @default.
- W3103330131 hasConceptScore W3103330131C153180895 @default.
- W3103330131 hasConceptScore W3103330131C154945302 @default.
- W3103330131 hasConceptScore W3103330131C188441871 @default.
- W3103330131 hasConceptScore W3103330131C2776401178 @default.
- W3103330131 hasConceptScore W3103330131C41008148 @default.
- W3103330131 hasConceptScore W3103330131C41895202 @default.
- W3103330131 hasConceptScore W3103330131C50644808 @default.
- W3103330131 hasConceptScore W3103330131C52622490 @default.
- W3103330131 hasFunder F4320335787 @default.
- W3103330131 hasLocation W31033301311 @default.
- W3103330131 hasOpenAccess W3103330131 @default.
- W3103330131 hasPrimaryLocation W31033301311 @default.
- W3103330131 hasRelatedWork W2136184105 @default.
- W3103330131 hasRelatedWork W2336974148 @default.
- W3103330131 hasRelatedWork W2546942002 @default.
- W3103330131 hasRelatedWork W2743258233 @default.
- W3103330131 hasRelatedWork W2782709127 @default.
- W3103330131 hasRelatedWork W3013515612 @default.
- W3103330131 hasRelatedWork W3208883981 @default.
- W3103330131 hasRelatedWork W4307834408 @default.
- W3103330131 hasRelatedWork W4320925816 @default.
- W3103330131 hasRelatedWork W2345184372 @default.
- W3103330131 hasVolume "8" @default.
- W3103330131 isParatext "false" @default.
- W3103330131 isRetracted "false" @default.
- W3103330131 magId "3103330131" @default.
- W3103330131 workType "article" @default.