Matches in SemOpenAlex for { <https://semopenalex.org/work/W3103382020> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W3103382020 abstract "<p>Molecular nitrogen (N<sub>2</sub>) is the main component of the atmosphere of Titan, while minor constituents include organic molecules, such as methane and higher hydrocarbons [1,2]. Among them, propyne (methylacetilene) has been identified in the Voyager IR spectrum of Titan since 1981 [3], while its structural isomer propadiene (allene), already predicted to be present by photochemical models, has been only recently identified via the Texas Echelle Cross Echelle Spectrograph on the NASA Infrared Telescope Facility [4]. Given the presence of higher hydrocarbons, N-bearing organic molecules in trace amounts (nitriles and imines) and haze macromolecules, Titan has proved to be the object of the Solar System with the richest atmospheric chemistry. Understanding such complex chemistry requires a multidisciplinary approach based on the interaction between chemists and planetary scientists. In particular, the build-up of realistic photochemical models requires accurate estimates of reaction rate coefficients and product branching ratios. This has led several research groups working in the field of chemical kinetics to undertake systematic studies on gas phase reactions of relevance in the chemistry of Titan.</p> <p>In our laboratory, we have used a combined experimental and theoretical approach to characterize the reactions involving atomic nitrogen in its first electronically excited state, <sup>2</sup>D, and simple hydrocarbons [5-9]. N(<sup>2</sup>D) is produced in the thermosphere of Titan by several high-energy processes and, being a metastable state with a long radiative lifetime, is able to undergo reactive collisions before decaying by spontaneous emission of photons [10].</p> <p>In this contribution, we report on a combined theoretical and experimental study of the reactions of N(<sup>2</sup>D) with the two structural isomers methylacetilene (CH<sub>3</sub>CCH) and allene (CH<sub>2</sub>CCH<sub>2</sub>). In many photochemical models, structural isomers are not distinguished and treated as only one species. However, we know that the reaction mechanism can be very different for each isomer leading to different final reaction products [11].</p> <p>More specifically, the potential energy surfaces for the two reactions have been derived by performing electronic structure calculations at DFT and CCSD(T) level, while the reaction mechanism of the H-displacement channels have been investigated experimentally by the crossed molecular beam technique. Both the reactions start with a barrierless attack of the N atom to multiple bond of the molecules, leading to the formation of cyclic intermediates. Different isomerization processes can then lead to various product channels.</p> <p>The implications for the chemistry of the atmosphere of Titan will be also addressed.</p> <p>&#160;</p> <p>&#160;</p> <p>&#160;</p> <p>&#160;</p> <p>&#160;</p> <p>&#160;</p> <p>&#160;</p> <p>&#160;</p> <p>References</p> <p>__________________________________</p> <p>[1] G.F. Lindal et al., The Atmosphere of Titan. An analysis of the Voyager radio occultation measurements. Icarus 2 (53), 348-363 (1983).</p> <p>[2] R.Hanel et al., Infrared Observations of the Saturnian System from Voyager 1. Science 212,&#160; 4491, 192-200 (1981).</p> <p>[3] W.C. Maguire et al., C3H8 and C3H4 in Titan's atmosphere. Nature 292, 5825, 683-686 (1981).</p> <p>[4] N.A. Lombardo et al., Detection of Propadiene on Titan. The Astrophysical Journal Letters 881, L33 (6 pp) (2019).</p> <p>[5] N. Balucani et al., Combined Crossed Molecular Beam and Theoretical Studies of the N(2D)+CH4 Reaction and Implications for Atmospheric Models of Titan. The Journal of Physical Chemistry A 113, 11138&#8211;11152 (2009).</p> <p>[6] N. Balucani et al., Cyanomethylene Formation from the Reaction of Excited Nitrogen Atoms with Acetylene: A Crossed Beam and ab Initio Study. Journal of the American Chemical Society 122, 4443-4450 (2000).</p> <p>[7] N. Balucani et al., Formation of nitriles and imines in the atmosphere of Titan: combined crossed-beam and theoretical studies on the reaction dynamics of excited nitrogen atoms N(2D) with ethane. Faraday Discussions 147, 189-216 (2010).</p> <p>[8] N. Balucani et al., Combined Crossed Beam and Theoretical Studies of the N(2D) + C2H4 Reaction and Implications for Atmospheric Models of Titan. The Journal of Physical Chemistry A 116, 10467-10479 (2012).</p> <p>[9] N. Balucani et al., Observation of nitrogen-bearing organic molecules from reactions of nitrogen atoms with hydrocarbons: A crossed beam study of N(2D) + ethylene. The Journal of Physical Chemistry A 104, 5655&#8211;5659 (2000).</p> <p>[10] O. Dutuit, et al, Critical review of N, N<sup>+</sup>, N<sub>2</sub><sup>+</sup>, N<sup>++</sup> and N<sub>2</sub><sup>++</sup> main production processes and reactions of relevance to Titan&#8217;s atmosphere. Astrophys. J. Suppl. Ser. 204, 20 (2013).</p> <p>[11] G. Vanuzzo et al., Isomer-specific chemistry in the propyne and allene reactions with oxygen atoms: CH<sub>3</sub>CH + CO versus CH<sub>2</sub>CH<sub>2</sub> + CO Products. The Journal of Physical Chemistry Letters 7, 1010-1015 (2016).</p> <p>&#160;</p>" @default.
- W3103382020 created "2020-11-23" @default.
- W3103382020 creator A5025047301 @default.
- W3103382020 creator A5038953056 @default.
- W3103382020 creator A5049550165 @default.
- W3103382020 creator A5060943979 @default.
- W3103382020 creator A5067990841 @default.
- W3103382020 creator A5071062839 @default.
- W3103382020 creator A5072921237 @default.
- W3103382020 creator A5079712506 @default.
- W3103382020 creator A5082991374 @default.
- W3103382020 creator A5088915029 @default.
- W3103382020 creator A5045082551 @default.
- W3103382020 creator A5073099033 @default.
- W3103382020 date "2020-10-08" @default.
- W3103382020 modified "2023-09-25" @default.
- W3103382020 title "The reactions of atomic nitrogen in its first electronically excited state with the C3H4 isomers and implications for the atmospheric chemistry of Titan" @default.
- W3103382020 doi "https://doi.org/10.5194/epsc2020-725" @default.
- W3103382020 hasPublicationYear "2020" @default.
- W3103382020 type Work @default.
- W3103382020 sameAs 3103382020 @default.
- W3103382020 citedByCount "0" @default.
- W3103382020 crossrefType "posted-content" @default.
- W3103382020 hasAuthorship W3103382020A5025047301 @default.
- W3103382020 hasAuthorship W3103382020A5038953056 @default.
- W3103382020 hasAuthorship W3103382020A5045082551 @default.
- W3103382020 hasAuthorship W3103382020A5049550165 @default.
- W3103382020 hasAuthorship W3103382020A5060943979 @default.
- W3103382020 hasAuthorship W3103382020A5067990841 @default.
- W3103382020 hasAuthorship W3103382020A5071062839 @default.
- W3103382020 hasAuthorship W3103382020A5072921237 @default.
- W3103382020 hasAuthorship W3103382020A5073099033 @default.
- W3103382020 hasAuthorship W3103382020A5079712506 @default.
- W3103382020 hasAuthorship W3103382020A5082991374 @default.
- W3103382020 hasAuthorship W3103382020A5088915029 @default.
- W3103382020 hasConcept C120128738 @default.
- W3103382020 hasConcept C121332964 @default.
- W3103382020 hasConcept C161790260 @default.
- W3103382020 hasConcept C178790620 @default.
- W3103382020 hasConcept C181500209 @default.
- W3103382020 hasConcept C184779094 @default.
- W3103382020 hasConcept C185592680 @default.
- W3103382020 hasConcept C2777197226 @default.
- W3103382020 hasConcept C2777361479 @default.
- W3103382020 hasConcept C2778652500 @default.
- W3103382020 hasConcept C32909587 @default.
- W3103382020 hasConcept C49999975 @default.
- W3103382020 hasConcept C50805821 @default.
- W3103382020 hasConcept C508106653 @default.
- W3103382020 hasConcept C537208039 @default.
- W3103382020 hasConcept C75473681 @default.
- W3103382020 hasConcept C87355193 @default.
- W3103382020 hasConceptScore W3103382020C120128738 @default.
- W3103382020 hasConceptScore W3103382020C121332964 @default.
- W3103382020 hasConceptScore W3103382020C161790260 @default.
- W3103382020 hasConceptScore W3103382020C178790620 @default.
- W3103382020 hasConceptScore W3103382020C181500209 @default.
- W3103382020 hasConceptScore W3103382020C184779094 @default.
- W3103382020 hasConceptScore W3103382020C185592680 @default.
- W3103382020 hasConceptScore W3103382020C2777197226 @default.
- W3103382020 hasConceptScore W3103382020C2777361479 @default.
- W3103382020 hasConceptScore W3103382020C2778652500 @default.
- W3103382020 hasConceptScore W3103382020C32909587 @default.
- W3103382020 hasConceptScore W3103382020C49999975 @default.
- W3103382020 hasConceptScore W3103382020C50805821 @default.
- W3103382020 hasConceptScore W3103382020C508106653 @default.
- W3103382020 hasConceptScore W3103382020C537208039 @default.
- W3103382020 hasConceptScore W3103382020C75473681 @default.
- W3103382020 hasConceptScore W3103382020C87355193 @default.
- W3103382020 hasLocation W31033820201 @default.
- W3103382020 hasOpenAccess W3103382020 @default.
- W3103382020 hasPrimaryLocation W31033820201 @default.
- W3103382020 hasRelatedWork W14170522 @default.
- W3103382020 hasRelatedWork W17327807 @default.
- W3103382020 hasRelatedWork W17391105 @default.
- W3103382020 hasRelatedWork W2622964 @default.
- W3103382020 hasRelatedWork W26894028 @default.
- W3103382020 hasRelatedWork W27446168 @default.
- W3103382020 hasRelatedWork W28873804 @default.
- W3103382020 hasRelatedWork W33215588 @default.
- W3103382020 hasRelatedWork W33495739 @default.
- W3103382020 hasRelatedWork W722416 @default.
- W3103382020 isParatext "false" @default.
- W3103382020 isRetracted "false" @default.
- W3103382020 magId "3103382020" @default.
- W3103382020 workType "article" @default.