Matches in SemOpenAlex for { <https://semopenalex.org/work/W3103460891> ?p ?o ?g. }
- W3103460891 endingPage "173" @default.
- W3103460891 startingPage "147" @default.
- W3103460891 abstract "Abstract Many research domains use data elicited from ‘citizen scientists’ when a direct measure of a process is expensive or infeasible. However, participants may report incorrect estimates or classifications due to their lack of skill. We demonstrate how Bayesian hierarchical models can be used to learn about latent variables of interest, while accounting for the participants’ abilities. The model is described in the context of an ecological application that involves crowdsourced classifications of georeferenced coral-reef images from the Great Barrier Reef, Australia. The latent variable of interest is the proportion of coral cover, which is a common indicator of coral reef health. The participants’ abilities are expressed in terms of sensitivity and specificity of a correctly classified set of points on the images. The model also incorporates a spatial component, which allows prediction of the latent variable in locations that have not been surveyed. We show that the model outperforms traditional weighted-regression approaches used to account for uncertainty in citizen science data. Our approach produces more accurate regression coefficients and provides a better characterisation of the latent process of interest. This new method is implemented in the probabilistic programming language Stan and can be applied to a wide number of problems that rely on uncertain citizen science data." @default.
- W3103460891 created "2020-11-23" @default.
- W3103460891 creator A5000475116 @default.
- W3103460891 creator A5001588690 @default.
- W3103460891 creator A5017378988 @default.
- W3103460891 creator A5020119606 @default.
- W3103460891 creator A5037659729 @default.
- W3103460891 date "2021-01-01" @default.
- W3103460891 modified "2023-09-25" @default.
- W3103460891 title "Correcting Misclassification Errors in Crowdsourced Ecological Data: A Bayesian Perspective" @default.
- W3103460891 cites W1499384097 @default.
- W3103460891 cites W1519478720 @default.
- W3103460891 cites W1552647955 @default.
- W3103460891 cites W1765223253 @default.
- W3103460891 cites W1889041476 @default.
- W3103460891 cites W1898904249 @default.
- W3103460891 cites W1963708795 @default.
- W3103460891 cites W1965497691 @default.
- W3103460891 cites W1970209037 @default.
- W3103460891 cites W1971491685 @default.
- W3103460891 cites W1984347929 @default.
- W3103460891 cites W1986803742 @default.
- W3103460891 cites W1998643818 @default.
- W3103460891 cites W2004014822 @default.
- W3103460891 cites W2004275037 @default.
- W3103460891 cites W2005574254 @default.
- W3103460891 cites W2006055706 @default.
- W3103460891 cites W2011435702 @default.
- W3103460891 cites W2026416225 @default.
- W3103460891 cites W2063163134 @default.
- W3103460891 cites W2069864946 @default.
- W3103460891 cites W2075319270 @default.
- W3103460891 cites W2085154695 @default.
- W3103460891 cites W2090241945 @default.
- W3103460891 cites W2098365715 @default.
- W3103460891 cites W2100704846 @default.
- W3103460891 cites W2105663391 @default.
- W3103460891 cites W2108116635 @default.
- W3103460891 cites W2108255332 @default.
- W3103460891 cites W2111940674 @default.
- W3103460891 cites W2112565381 @default.
- W3103460891 cites W2119754244 @default.
- W3103460891 cites W2139330996 @default.
- W3103460891 cites W2141649520 @default.
- W3103460891 cites W2148534890 @default.
- W3103460891 cites W2155475871 @default.
- W3103460891 cites W2155988679 @default.
- W3103460891 cites W2170565777 @default.
- W3103460891 cites W2329857801 @default.
- W3103460891 cites W2341497316 @default.
- W3103460891 cites W2398377430 @default.
- W3103460891 cites W2411308438 @default.
- W3103460891 cites W2471125166 @default.
- W3103460891 cites W2536595456 @default.
- W3103460891 cites W2557668118 @default.
- W3103460891 cites W2562196854 @default.
- W3103460891 cites W2565806513 @default.
- W3103460891 cites W2577537660 @default.
- W3103460891 cites W2596968510 @default.
- W3103460891 cites W2617245139 @default.
- W3103460891 cites W2736856657 @default.
- W3103460891 cites W2769944991 @default.
- W3103460891 cites W2782456798 @default.
- W3103460891 cites W2789553370 @default.
- W3103460891 cites W2791334615 @default.
- W3103460891 cites W2793685246 @default.
- W3103460891 cites W2796944804 @default.
- W3103460891 cites W2908811428 @default.
- W3103460891 cites W2909223264 @default.
- W3103460891 cites W2919300066 @default.
- W3103460891 cites W2952636636 @default.
- W3103460891 cites W2968490943 @default.
- W3103460891 cites W2977071180 @default.
- W3103460891 cites W2979527643 @default.
- W3103460891 cites W2987121321 @default.
- W3103460891 cites W3010042980 @default.
- W3103460891 cites W4232464081 @default.
- W3103460891 doi "https://doi.org/10.1111/rssc.12453" @default.
- W3103460891 hasPublicationYear "2021" @default.
- W3103460891 type Work @default.
- W3103460891 sameAs 3103460891 @default.
- W3103460891 citedByCount "5" @default.
- W3103460891 countsByYear W31034608912021 @default.
- W3103460891 countsByYear W31034608912023 @default.
- W3103460891 crossrefType "journal-article" @default.
- W3103460891 hasAuthorship W3103460891A5000475116 @default.
- W3103460891 hasAuthorship W3103460891A5001588690 @default.
- W3103460891 hasAuthorship W3103460891A5017378988 @default.
- W3103460891 hasAuthorship W3103460891A5020119606 @default.
- W3103460891 hasAuthorship W3103460891A5037659729 @default.
- W3103460891 hasBestOaLocation W31034608911 @default.
- W3103460891 hasConcept C107673813 @default.
- W3103460891 hasConcept C119857082 @default.
- W3103460891 hasConcept C124101348 @default.
- W3103460891 hasConcept C134306372 @default.
- W3103460891 hasConcept C154945302 @default.
- W3103460891 hasConcept C166957645 @default.
- W3103460891 hasConcept C171686336 @default.