Matches in SemOpenAlex for { <https://semopenalex.org/work/W3103480358> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W3103480358 abstract "Using histopathological images to automatically classify cancer is a difficult task for accurately detecting cancer, especially to identify metastatic cancer in small image patches obtained from larger digital pathology scans. Computer diagnosis technology has attracted wide attention from researchers. In this paper, we propose a noval method which combines the deep learning algorithm in image classification, the DenseNet169 framework and Rectified Adam optimization algorithm. The connectivity pattern of DenseNet is direct connections from any layer to all consecutive layers, which can effectively improve the information flow between different layers. With the fact that RAdam is not easy to fall into a local optimal solution, and it can converge quickly in model training. The experimental results shows that our model achieves superior performance over the other classical convolutional neural networks approaches, such as Vgg19, Resnet34, Resnet50. In particular, the Auc-Roc score of our DenseNet169 model is 1.77% higher than Vgg19 model, and the Accuracy score is 1.50% higher. Moreover, we also study the relationship between loss value and batches processed during the training stage and validation stage, and obtain some important and interesting findings." @default.
- W3103480358 created "2020-11-23" @default.
- W3103480358 creator A5008837035 @default.
- W3103480358 creator A5018718326 @default.
- W3103480358 creator A5020760956 @default.
- W3103480358 creator A5030047091 @default.
- W3103480358 creator A5076577323 @default.
- W3103480358 date "2020-11-13" @default.
- W3103480358 modified "2023-09-26" @default.
- W3103480358 title "Metastatic Cancer Image Classification Based On Deep Learning Method" @default.
- W3103480358 cites W1836465849 @default.
- W3103480358 cites W2018177603 @default.
- W3103480358 cites W2050997943 @default.
- W3103480358 cites W2156387975 @default.
- W3103480358 cites W2163605009 @default.
- W3103480358 cites W2194775991 @default.
- W3103480358 cites W2474421929 @default.
- W3103480358 cites W2622263826 @default.
- W3103480358 cites W2772723798 @default.
- W3103480358 cites W2903382683 @default.
- W3103480358 cites W2964121744 @default.
- W3103480358 doi "https://doi.org/10.48550/arxiv.2011.06984" @default.
- W3103480358 hasPublicationYear "2020" @default.
- W3103480358 type Work @default.
- W3103480358 sameAs 3103480358 @default.
- W3103480358 citedByCount "0" @default.
- W3103480358 crossrefType "posted-content" @default.
- W3103480358 hasAuthorship W3103480358A5008837035 @default.
- W3103480358 hasAuthorship W3103480358A5018718326 @default.
- W3103480358 hasAuthorship W3103480358A5020760956 @default.
- W3103480358 hasAuthorship W3103480358A5030047091 @default.
- W3103480358 hasAuthorship W3103480358A5076577323 @default.
- W3103480358 hasBestOaLocation W31034803581 @default.
- W3103480358 hasConcept C108583219 @default.
- W3103480358 hasConcept C115961682 @default.
- W3103480358 hasConcept C119857082 @default.
- W3103480358 hasConcept C153180895 @default.
- W3103480358 hasConcept C154945302 @default.
- W3103480358 hasConcept C162324750 @default.
- W3103480358 hasConcept C178790620 @default.
- W3103480358 hasConcept C185592680 @default.
- W3103480358 hasConcept C187736073 @default.
- W3103480358 hasConcept C2777522853 @default.
- W3103480358 hasConcept C2779227376 @default.
- W3103480358 hasConcept C2780451532 @default.
- W3103480358 hasConcept C41008148 @default.
- W3103480358 hasConcept C50644808 @default.
- W3103480358 hasConcept C81363708 @default.
- W3103480358 hasConceptScore W3103480358C108583219 @default.
- W3103480358 hasConceptScore W3103480358C115961682 @default.
- W3103480358 hasConceptScore W3103480358C119857082 @default.
- W3103480358 hasConceptScore W3103480358C153180895 @default.
- W3103480358 hasConceptScore W3103480358C154945302 @default.
- W3103480358 hasConceptScore W3103480358C162324750 @default.
- W3103480358 hasConceptScore W3103480358C178790620 @default.
- W3103480358 hasConceptScore W3103480358C185592680 @default.
- W3103480358 hasConceptScore W3103480358C187736073 @default.
- W3103480358 hasConceptScore W3103480358C2777522853 @default.
- W3103480358 hasConceptScore W3103480358C2779227376 @default.
- W3103480358 hasConceptScore W3103480358C2780451532 @default.
- W3103480358 hasConceptScore W3103480358C41008148 @default.
- W3103480358 hasConceptScore W3103480358C50644808 @default.
- W3103480358 hasConceptScore W3103480358C81363708 @default.
- W3103480358 hasLocation W31034803581 @default.
- W3103480358 hasOpenAccess W3103480358 @default.
- W3103480358 hasPrimaryLocation W31034803581 @default.
- W3103480358 hasRelatedWork W10961682 @default.
- W3103480358 hasRelatedWork W12336802 @default.
- W3103480358 hasRelatedWork W1383942 @default.
- W3103480358 hasRelatedWork W14516383 @default.
- W3103480358 hasRelatedWork W14924723 @default.
- W3103480358 hasRelatedWork W1562032 @default.
- W3103480358 hasRelatedWork W6770330 @default.
- W3103480358 hasRelatedWork W7303821 @default.
- W3103480358 hasRelatedWork W9190101 @default.
- W3103480358 hasRelatedWork W9333608 @default.
- W3103480358 isParatext "false" @default.
- W3103480358 isRetracted "false" @default.
- W3103480358 magId "3103480358" @default.
- W3103480358 workType "article" @default.