Matches in SemOpenAlex for { <https://semopenalex.org/work/W3103522434> ?p ?o ?g. }
- W3103522434 abstract "One of the potential applications of a quantum computer is solving quantum chemical systems. It is known that one of the fastest ways to obtain somewhat accurate solutions classically is to use approximations of density functional theory. We demonstrate a general method for obtaining the exact functional as a machine learned model from a sufficiently powerful quantum computer. Only existing assumptions for the current feasibility of solutions on the quantum computer are used. Several known algorithms including quantum phase estimation, quantum amplitude estimation, and quantum gradient methods are used to train a machine learned model. One advantage of this combination of algorithms is that the quantum wavefunction does not need to be completely re-prepared at each step, lowering a sizable pre-factor. Using the assumptions for solutions of the ground-state algorithms on a quantum computer, we demonstrate that finding the Kohn-Sham potential is not necessarily more difficult than the ground state density. Once constructed, a classical user can use the resulting machine learned functional to solve for the ground state of a system self-consistently, provided the machine learned approximation is accurate enough for the input system. It is also demonstrated how the classical user can access commonly used time- and temperature-dependent approximations from the ground state model. Minor modifications to the algorithm can learn other types of functional theories including exact time- and temperature-dependence. Several other algorithms--including quantum machine learning--are demonstrated to be impractical in the general case for this problem." @default.
- W3103522434 created "2020-11-23" @default.
- W3103522434 creator A5043658619 @default.
- W3103522434 creator A5044484000 @default.
- W3103522434 date "2020-11-16" @default.
- W3103522434 modified "2023-09-24" @default.
- W3103522434 title "Density functionals and Kohn-Sham potentials with minimal wavefunction preparations on a quantum computer" @default.
- W3103522434 cites W1541400212 @default.
- W3103522434 cites W1652827211 @default.
- W3103522434 cites W1672106159 @default.
- W3103522434 cites W1695624946 @default.
- W3103522434 cites W1820164671 @default.
- W3103522434 cites W1926775081 @default.
- W3103522434 cites W1964734715 @default.
- W3103522434 cites W1973115470 @default.
- W3103522434 cites W1978215016 @default.
- W3103522434 cites W1978365214 @default.
- W3103522434 cites W1980428773 @default.
- W3103522434 cites W1982018398 @default.
- W3103522434 cites W1982356449 @default.
- W3103522434 cites W1984096901 @default.
- W3103522434 cites W1987174753 @default.
- W3103522434 cites W1987965590 @default.
- W3103522434 cites W1991300868 @default.
- W3103522434 cites W1992732132 @default.
- W3103522434 cites W1992942299 @default.
- W3103522434 cites W1993653938 @default.
- W3103522434 cites W1996082548 @default.
- W3103522434 cites W1997391728 @default.
- W3103522434 cites W2001073682 @default.
- W3103522434 cites W2002372750 @default.
- W3103522434 cites W2006405124 @default.
- W3103522434 cites W2007229782 @default.
- W3103522434 cites W2007552898 @default.
- W3103522434 cites W2010399932 @default.
- W3103522434 cites W2012349011 @default.
- W3103522434 cites W2015015072 @default.
- W3103522434 cites W2018541907 @default.
- W3103522434 cites W2020786104 @default.
- W3103522434 cites W2021447576 @default.
- W3103522434 cites W2021809012 @default.
- W3103522434 cites W2022804778 @default.
- W3103522434 cites W2023046547 @default.
- W3103522434 cites W2024137763 @default.
- W3103522434 cites W2025444507 @default.
- W3103522434 cites W2026907619 @default.
- W3103522434 cites W2029465995 @default.
- W3103522434 cites W2030976617 @default.
- W3103522434 cites W2031881616 @default.
- W3103522434 cites W2035056385 @default.
- W3103522434 cites W2037566781 @default.
- W3103522434 cites W2037610438 @default.
- W3103522434 cites W2038533471 @default.
- W3103522434 cites W2042490355 @default.
- W3103522434 cites W2046481556 @default.
- W3103522434 cites W2050334794 @default.
- W3103522434 cites W2050562776 @default.
- W3103522434 cites W2050729144 @default.
- W3103522434 cites W2051553349 @default.
- W3103522434 cites W2051975173 @default.
- W3103522434 cites W2052891002 @default.
- W3103522434 cites W2053097306 @default.
- W3103522434 cites W2057858097 @default.
- W3103522434 cites W2057926708 @default.
- W3103522434 cites W2058398316 @default.
- W3103522434 cites W2060146715 @default.
- W3103522434 cites W2060750474 @default.
- W3103522434 cites W2062738866 @default.
- W3103522434 cites W2062938319 @default.
- W3103522434 cites W2063798031 @default.
- W3103522434 cites W2063947441 @default.
- W3103522434 cites W2065768518 @default.
- W3103522434 cites W2065953729 @default.
- W3103522434 cites W2067308735 @default.
- W3103522434 cites W2067804932 @default.
- W3103522434 cites W2072565812 @default.
- W3103522434 cites W2072808339 @default.
- W3103522434 cites W2077744645 @default.
- W3103522434 cites W2078811533 @default.
- W3103522434 cites W2082877496 @default.
- W3103522434 cites W2084053963 @default.
- W3103522434 cites W2084807383 @default.
- W3103522434 cites W2086458318 @default.
- W3103522434 cites W2093774709 @default.
- W3103522434 cites W2093779539 @default.
- W3103522434 cites W2095269805 @default.
- W3103522434 cites W2095515682 @default.
- W3103522434 cites W2097489306 @default.
- W3103522434 cites W2098614082 @default.
- W3103522434 cites W2100827027 @default.
- W3103522434 cites W2101793569 @default.
- W3103522434 cites W2112699581 @default.
- W3103522434 cites W2114042189 @default.
- W3103522434 cites W2117980155 @default.
- W3103522434 cites W2121981260 @default.
- W3103522434 cites W2135246499 @default.
- W3103522434 cites W2136796925 @default.
- W3103522434 cites W2137147061 @default.
- W3103522434 cites W2142341463 @default.
- W3103522434 cites W2142501550 @default.