Matches in SemOpenAlex for { <https://semopenalex.org/work/W3103565362> ?p ?o ?g. }
- W3103565362 abstract "Abstract Background Carotid endarterectomy (CEA) and carotid artery stenting (CAS) are recommended for high stroke-risk patients with carotid artery stenosis to reduce ischemic events. However, we often face difficulty in determining the best treatment strategy. Objective We aimed to develop an accurate post-CEA/CAS outcome prediction model using machine learning that will serve as a basis for a new decision support tool for patient-specific treatment planning. Methods Retrospectively collected data from 165 consecutive patients with carotid stenosis underwent CEA or CAS were divided into training and test samples. The following five machine learning algorithms were tuned, and their predictive performance evaluated by comparison with surgeon predictions: an artificial neural network, logistic regression, support vector machine, random forest, and extreme gradient boosting (XGBoost). Seventeen clinical factors were introduced into the models. Outcome was defined as any ischemic stroke within 30 days after treatment including asymptomatic diffusion-weighted imaging abnormalities. Results The XGBoost model performed the best in the evaluation; its sensitivity, specificity, positive predictive value, and accuracy were 31.9%, 94.6%, 47.2%, and 86.2%, respectively. These statistical measures were comparable to those of surgeons. Internal carotid artery peak systolic velocity, low density lipoprotein cholesterol, and procedure (CEA or CAS) were the most contributing factors according to the XGBoost algorithm. Conclusion We were able to develop a post-procedural outcome prediction model comparable to surgeons in performance. The accurate outcome prediction model will make it possible to make a more appropriate patient-specific selection of CEA or CAS for the treatment of carotid artery stenosis." @default.
- W3103565362 created "2020-11-23" @default.
- W3103565362 creator A5003564265 @default.
- W3103565362 creator A5021390980 @default.
- W3103565362 creator A5021799140 @default.
- W3103565362 creator A5042011402 @default.
- W3103565362 creator A5044225746 @default.
- W3103565362 creator A5044806057 @default.
- W3103565362 creator A5047049251 @default.
- W3103565362 creator A5064521416 @default.
- W3103565362 creator A5067996611 @default.
- W3103565362 creator A5070121819 @default.
- W3103565362 creator A5078008899 @default.
- W3103565362 creator A5079411329 @default.
- W3103565362 date "2020-11-18" @default.
- W3103565362 modified "2023-09-25" @default.
- W3103565362 title "Potential of machine learning to predict early ischemic events after carotid endarterectomy or stenting: A comparison with surgeon predictions" @default.
- W3103565362 cites W1969922395 @default.
- W3103565362 cites W1987329314 @default.
- W3103565362 cites W1994682257 @default.
- W3103565362 cites W2018853927 @default.
- W3103565362 cites W2020467721 @default.
- W3103565362 cites W2067964239 @default.
- W3103565362 cites W2074541701 @default.
- W3103565362 cites W2079069297 @default.
- W3103565362 cites W2089689975 @default.
- W3103565362 cites W2096654040 @default.
- W3103565362 cites W2096863518 @default.
- W3103565362 cites W2097349400 @default.
- W3103565362 cites W2102572407 @default.
- W3103565362 cites W2124247204 @default.
- W3103565362 cites W2126411494 @default.
- W3103565362 cites W2132886902 @default.
- W3103565362 cites W2152662337 @default.
- W3103565362 cites W2210176735 @default.
- W3103565362 cites W2329275711 @default.
- W3103565362 cites W2332609836 @default.
- W3103565362 cites W2418233705 @default.
- W3103565362 cites W2564485625 @default.
- W3103565362 cites W2725311322 @default.
- W3103565362 cites W2800482390 @default.
- W3103565362 cites W2893462288 @default.
- W3103565362 cites W2893876507 @default.
- W3103565362 cites W2898554342 @default.
- W3103565362 cites W2907222678 @default.
- W3103565362 cites W2910816311 @default.
- W3103565362 cites W2923418412 @default.
- W3103565362 cites W2942621001 @default.
- W3103565362 cites W2943644689 @default.
- W3103565362 cites W2963589681 @default.
- W3103565362 cites W2966977115 @default.
- W3103565362 cites W3102476541 @default.
- W3103565362 doi "https://doi.org/10.1101/2020.11.16.20231639" @default.
- W3103565362 hasPublicationYear "2020" @default.
- W3103565362 type Work @default.
- W3103565362 sameAs 3103565362 @default.
- W3103565362 citedByCount "0" @default.
- W3103565362 crossrefType "posted-content" @default.
- W3103565362 hasAuthorship W3103565362A5003564265 @default.
- W3103565362 hasAuthorship W3103565362A5021390980 @default.
- W3103565362 hasAuthorship W3103565362A5021799140 @default.
- W3103565362 hasAuthorship W3103565362A5042011402 @default.
- W3103565362 hasAuthorship W3103565362A5044225746 @default.
- W3103565362 hasAuthorship W3103565362A5044806057 @default.
- W3103565362 hasAuthorship W3103565362A5047049251 @default.
- W3103565362 hasAuthorship W3103565362A5064521416 @default.
- W3103565362 hasAuthorship W3103565362A5067996611 @default.
- W3103565362 hasAuthorship W3103565362A5070121819 @default.
- W3103565362 hasAuthorship W3103565362A5078008899 @default.
- W3103565362 hasAuthorship W3103565362A5079411329 @default.
- W3103565362 hasBestOaLocation W31035653621 @default.
- W3103565362 hasConcept C119857082 @default.
- W3103565362 hasConcept C126322002 @default.
- W3103565362 hasConcept C126838900 @default.
- W3103565362 hasConcept C127413603 @default.
- W3103565362 hasConcept C141071460 @default.
- W3103565362 hasConcept C151956035 @default.
- W3103565362 hasConcept C154945302 @default.
- W3103565362 hasConcept C164705383 @default.
- W3103565362 hasConcept C169258074 @default.
- W3103565362 hasConcept C2777910003 @default.
- W3103565362 hasConcept C2778333808 @default.
- W3103565362 hasConcept C2779169563 @default.
- W3103565362 hasConcept C2779745121 @default.
- W3103565362 hasConcept C2780007028 @default.
- W3103565362 hasConcept C2780645631 @default.
- W3103565362 hasConcept C2781068581 @default.
- W3103565362 hasConcept C41008148 @default.
- W3103565362 hasConcept C71924100 @default.
- W3103565362 hasConcept C78519656 @default.
- W3103565362 hasConceptScore W3103565362C119857082 @default.
- W3103565362 hasConceptScore W3103565362C126322002 @default.
- W3103565362 hasConceptScore W3103565362C126838900 @default.
- W3103565362 hasConceptScore W3103565362C127413603 @default.
- W3103565362 hasConceptScore W3103565362C141071460 @default.
- W3103565362 hasConceptScore W3103565362C151956035 @default.
- W3103565362 hasConceptScore W3103565362C154945302 @default.
- W3103565362 hasConceptScore W3103565362C164705383 @default.
- W3103565362 hasConceptScore W3103565362C169258074 @default.
- W3103565362 hasConceptScore W3103565362C2777910003 @default.