Matches in SemOpenAlex for { <https://semopenalex.org/work/W3103565718> ?p ?o ?g. }
- W3103565718 endingPage "A99" @default.
- W3103565718 startingPage "A99" @default.
- W3103565718 abstract "The topology and dynamics of the solar chromosphere are greatly affected by the presence of magnetic fields. The magnetic field can be inferred by analyzing polarimetric observations of spectral lines. Polarimetric signals induced by chromospheric magnetic fields are, however, particularly weak, and in most cases very close to the detection limit of current instrumentation. Because of this, there are only few observational studies that have successfully reconstructed the three components of the magnetic field vector in the chromosphere. Traditionally, the signal-to-noise ratio of observations has been improved by performing time-averages or spatial averages, but in both cases, some information is lost. More advanced techniques, like principal-component-analysis, have also been employed to take advantage of the sparsity of the observations in the spectral direction. In the present study, we propose to use the spatial coherence of the observations to reduce the noise using deep-learning techniques. We design a neural network that is capable of recovering weak signals under a complex noise corruption (including instrumental artifacts and non-linear post-processing). The training of the network is carried out without a priori knowledge of the clean signals, or an explicit statistical characterization of the noise or other corruption. We only use the same observations as our generative model. The performance of this method is demonstrated on both, synthetic experiments and real data. We show examples of the improvement in typical signals obtained in current telescopes such as the Swedish 1-meter Solar Telescope. The presented method can recover weak signals equally well no matter on what spectral line or spectral sampling is used. It is especially suitable for cases when the wavelength sampling is scarce." @default.
- W3103565718 created "2020-11-23" @default.
- W3103565718 creator A5026245103 @default.
- W3103565718 creator A5077952551 @default.
- W3103565718 creator A5084131983 @default.
- W3103565718 date "2019-09-01" @default.
- W3103565718 modified "2023-10-14" @default.
- W3103565718 title "Solar image denoising with convolutional neural networks" @default.
- W3103565718 cites W1995121858 @default.
- W3103565718 cites W2027073294 @default.
- W3103565718 cites W2032783371 @default.
- W3103565718 cites W2113753244 @default.
- W3103565718 cites W2127469940 @default.
- W3103565718 cites W2131080711 @default.
- W3103565718 cites W2508457857 @default.
- W3103565718 cites W2525479181 @default.
- W3103565718 cites W2528572162 @default.
- W3103565718 cites W2560052225 @default.
- W3103565718 cites W2566092359 @default.
- W3103565718 cites W2602452548 @default.
- W3103565718 cites W2776265614 @default.
- W3103565718 cites W2793171700 @default.
- W3103565718 cites W2800761015 @default.
- W3103565718 cites W2808799744 @default.
- W3103565718 cites W2891029962 @default.
- W3103565718 cites W2901439446 @default.
- W3103565718 cites W3098023618 @default.
- W3103565718 cites W3098375831 @default.
- W3103565718 cites W3100654551 @default.
- W3103565718 cites W3101166507 @default.
- W3103565718 cites W3102739005 @default.
- W3103565718 cites W3104542462 @default.
- W3103565718 cites W3104654002 @default.
- W3103565718 cites W3104725225 @default.
- W3103565718 cites W3104754270 @default.
- W3103565718 cites W3106476760 @default.
- W3103565718 cites W3106518077 @default.
- W3103565718 cites W3110764629 @default.
- W3103565718 cites W4253065960 @default.
- W3103565718 cites W4300090858 @default.
- W3103565718 doi "https://doi.org/10.1051/0004-6361/201936069" @default.
- W3103565718 hasPublicationYear "2019" @default.
- W3103565718 type Work @default.
- W3103565718 sameAs 3103565718 @default.
- W3103565718 citedByCount "23" @default.
- W3103565718 countsByYear W31035657182020 @default.
- W3103565718 countsByYear W31035657182021 @default.
- W3103565718 countsByYear W31035657182022 @default.
- W3103565718 countsByYear W31035657182023 @default.
- W3103565718 crossrefType "journal-article" @default.
- W3103565718 hasAuthorship W3103565718A5026245103 @default.
- W3103565718 hasAuthorship W3103565718A5077952551 @default.
- W3103565718 hasAuthorship W3103565718A5084131983 @default.
- W3103565718 hasBestOaLocation W31035657181 @default.
- W3103565718 hasConcept C106933524 @default.
- W3103565718 hasConcept C115260700 @default.
- W3103565718 hasConcept C115961682 @default.
- W3103565718 hasConcept C121332964 @default.
- W3103565718 hasConcept C153180895 @default.
- W3103565718 hasConcept C154945302 @default.
- W3103565718 hasConcept C163294075 @default.
- W3103565718 hasConcept C24890656 @default.
- W3103565718 hasConcept C2780684822 @default.
- W3103565718 hasConcept C2780848835 @default.
- W3103565718 hasConcept C41008148 @default.
- W3103565718 hasConcept C44870925 @default.
- W3103565718 hasConcept C50644808 @default.
- W3103565718 hasConcept C62520636 @default.
- W3103565718 hasConcept C81363708 @default.
- W3103565718 hasConcept C99498987 @default.
- W3103565718 hasConceptScore W3103565718C106933524 @default.
- W3103565718 hasConceptScore W3103565718C115260700 @default.
- W3103565718 hasConceptScore W3103565718C115961682 @default.
- W3103565718 hasConceptScore W3103565718C121332964 @default.
- W3103565718 hasConceptScore W3103565718C153180895 @default.
- W3103565718 hasConceptScore W3103565718C154945302 @default.
- W3103565718 hasConceptScore W3103565718C163294075 @default.
- W3103565718 hasConceptScore W3103565718C24890656 @default.
- W3103565718 hasConceptScore W3103565718C2780684822 @default.
- W3103565718 hasConceptScore W3103565718C2780848835 @default.
- W3103565718 hasConceptScore W3103565718C41008148 @default.
- W3103565718 hasConceptScore W3103565718C44870925 @default.
- W3103565718 hasConceptScore W3103565718C50644808 @default.
- W3103565718 hasConceptScore W3103565718C62520636 @default.
- W3103565718 hasConceptScore W3103565718C81363708 @default.
- W3103565718 hasConceptScore W3103565718C99498987 @default.
- W3103565718 hasLocation W31035657181 @default.
- W3103565718 hasLocation W31035657182 @default.
- W3103565718 hasLocation W31035657183 @default.
- W3103565718 hasLocation W31035657184 @default.
- W3103565718 hasOpenAccess W3103565718 @default.
- W3103565718 hasPrimaryLocation W31035657181 @default.
- W3103565718 hasRelatedWork W2006554133 @default.
- W3103565718 hasRelatedWork W2023653174 @default.
- W3103565718 hasRelatedWork W2066925236 @default.
- W3103565718 hasRelatedWork W2141311110 @default.
- W3103565718 hasRelatedWork W2145765059 @default.
- W3103565718 hasRelatedWork W2770733066 @default.