Matches in SemOpenAlex for { <https://semopenalex.org/work/W3103587788> ?p ?o ?g. }
- W3103587788 endingPage "4485" @default.
- W3103587788 startingPage "4475" @default.
- W3103587788 abstract "In this paper, we extend the notion of Cauchy-Schwarz divergence to point processes and establish that the Cauchy-Schwarz divergence between the probability densities of two Poisson point processes is half the squared $mathbf{L^{2}}$-distance between their intensity functions. Extension of this result to mixtures of Poisson point processes and, in the case where the intensity functions are Gaussian mixtures, closed form expressions for the Cauchy-Schwarz divergence are presented. Our result also implies that the Bhattachryaa distance between the probability distributions of two Poisson point processes is equal to the square of the Hellinger distance between their intensity measures. We illustrate the result via a sensor management application where the system states are modeled as point processes." @default.
- W3103587788 created "2020-11-23" @default.
- W3103587788 creator A5006022796 @default.
- W3103587788 creator A5065965170 @default.
- W3103587788 creator A5072792589 @default.
- W3103587788 date "2015-08-01" @default.
- W3103587788 modified "2023-10-17" @default.
- W3103587788 title "The Cauchy–Schwarz Divergence for Poisson Point Processes" @default.
- W3103587788 cites W1511278462 @default.
- W3103587788 cites W152055444 @default.
- W3103587788 cites W1552861460 @default.
- W3103587788 cites W1556090664 @default.
- W3103587788 cites W1965555277 @default.
- W3103587788 cites W1985390027 @default.
- W3103587788 cites W2014787937 @default.
- W3103587788 cites W2031774932 @default.
- W3103587788 cites W2044589640 @default.
- W3103587788 cites W2045542759 @default.
- W3103587788 cites W2055406046 @default.
- W3103587788 cites W2059305573 @default.
- W3103587788 cites W2079959006 @default.
- W3103587788 cites W2088373424 @default.
- W3103587788 cites W2088587583 @default.
- W3103587788 cites W2090026919 @default.
- W3103587788 cites W2097249527 @default.
- W3103587788 cites W2097704405 @default.
- W3103587788 cites W2099111195 @default.
- W3103587788 cites W2102413189 @default.
- W3103587788 cites W2118053528 @default.
- W3103587788 cites W2120248756 @default.
- W3103587788 cites W2130764557 @default.
- W3103587788 cites W2134494829 @default.
- W3103587788 cites W2136251587 @default.
- W3103587788 cites W2136472099 @default.
- W3103587788 cites W2137585588 @default.
- W3103587788 cites W2145324048 @default.
- W3103587788 cites W2145873277 @default.
- W3103587788 cites W2146804111 @default.
- W3103587788 cites W2146950091 @default.
- W3103587788 cites W2149197198 @default.
- W3103587788 cites W2152664824 @default.
- W3103587788 cites W2161435744 @default.
- W3103587788 cites W2485503572 @default.
- W3103587788 cites W331831712 @default.
- W3103587788 cites W4206545993 @default.
- W3103587788 cites W4230615713 @default.
- W3103587788 cites W4243473133 @default.
- W3103587788 cites W70609629 @default.
- W3103587788 cites W2564070486 @default.
- W3103587788 doi "https://doi.org/10.1109/tit.2015.2441709" @default.
- W3103587788 hasPublicationYear "2015" @default.
- W3103587788 type Work @default.
- W3103587788 sameAs 3103587788 @default.
- W3103587788 citedByCount "70" @default.
- W3103587788 countsByYear W31035877882015 @default.
- W3103587788 countsByYear W31035877882016 @default.
- W3103587788 countsByYear W31035877882017 @default.
- W3103587788 countsByYear W31035877882018 @default.
- W3103587788 countsByYear W31035877882019 @default.
- W3103587788 countsByYear W31035877882020 @default.
- W3103587788 countsByYear W31035877882021 @default.
- W3103587788 countsByYear W31035877882022 @default.
- W3103587788 countsByYear W31035877882023 @default.
- W3103587788 crossrefType "journal-article" @default.
- W3103587788 hasAuthorship W3103587788A5006022796 @default.
- W3103587788 hasAuthorship W3103587788A5065965170 @default.
- W3103587788 hasAuthorship W3103587788A5072792589 @default.
- W3103587788 hasBestOaLocation W31035877882 @default.
- W3103587788 hasConcept C100906024 @default.
- W3103587788 hasConcept C105795698 @default.
- W3103587788 hasConcept C121332964 @default.
- W3103587788 hasConcept C134306372 @default.
- W3103587788 hasConcept C138885662 @default.
- W3103587788 hasConcept C153024298 @default.
- W3103587788 hasConcept C163716315 @default.
- W3103587788 hasConcept C184701930 @default.
- W3103587788 hasConcept C207390915 @default.
- W3103587788 hasConcept C28826006 @default.
- W3103587788 hasConcept C33923547 @default.
- W3103587788 hasConcept C41895202 @default.
- W3103587788 hasConcept C45555294 @default.
- W3103587788 hasConcept C49344536 @default.
- W3103587788 hasConcept C62520636 @default.
- W3103587788 hasConcept C88871306 @default.
- W3103587788 hasConcept C93038891 @default.
- W3103587788 hasConceptScore W3103587788C100906024 @default.
- W3103587788 hasConceptScore W3103587788C105795698 @default.
- W3103587788 hasConceptScore W3103587788C121332964 @default.
- W3103587788 hasConceptScore W3103587788C134306372 @default.
- W3103587788 hasConceptScore W3103587788C138885662 @default.
- W3103587788 hasConceptScore W3103587788C153024298 @default.
- W3103587788 hasConceptScore W3103587788C163716315 @default.
- W3103587788 hasConceptScore W3103587788C184701930 @default.
- W3103587788 hasConceptScore W3103587788C207390915 @default.
- W3103587788 hasConceptScore W3103587788C28826006 @default.
- W3103587788 hasConceptScore W3103587788C33923547 @default.
- W3103587788 hasConceptScore W3103587788C41895202 @default.
- W3103587788 hasConceptScore W3103587788C45555294 @default.