Matches in SemOpenAlex for { <https://semopenalex.org/work/W3103655276> ?p ?o ?g. }
- W3103655276 endingPage "12" @default.
- W3103655276 startingPage "1" @default.
- W3103655276 abstract "The research and development of autonomous vehicle (AV) technology have been gaining ground globally. However, a few studies have performed an in-depth exploration of the contributing factors of crashes involving AVs. This study aims to predict the severity of crashes involving AVs and analyze the effects of the different factors on crash severity. Crash data were obtained from the AV-related crash reports presented to the California Department of Motor Vehicles in 2019 and included 75 uninjured and 18 injured accident cases. The points-of-interest (POI) data were collected from Google Map Application Programming Interface (API). Descriptive statistics analysis was applied to examine the features of crashes involving AVs in terms of collision type, crash severity, vehicle movement preceding the collision, and degree of vehicle damage. To compare the classification performance of different classifiers, we use two different classification models: eXtreme Gradient Boosting (XGBoost) and Classification and Regression Tree (CART). The result shows that the XGBoost model performs better in identifying the injured crashes involving AVs. Compared with the original XGBoost model, the recall and G-mean of the XGBoost model combining POI data improved by 100% and 11.1%, respectively. The main features that contribute to the severity of crashes include weather, degree of vehicle damage, accident location, and collision type. The results indicate that crash severity significantly increases if the AVs collided at an intersection under extreme weather conditions (e.g., fog and snow). Moreover, an accident resulting in injuries also had a higher probability of occurring in areas where land-use patterns are highly diverse. The knowledge gained from this research could ultimately contribute to assessing and improving the safety performance of the current AVs." @default.
- W3103655276 created "2020-11-23" @default.
- W3103655276 creator A5043571063 @default.
- W3103655276 creator A5045050311 @default.
- W3103655276 creator A5064277760 @default.
- W3103655276 creator A5064530138 @default.
- W3103655276 creator A5075735395 @default.
- W3103655276 date "2020-11-18" @default.
- W3103655276 modified "2023-10-16" @default.
- W3103655276 title "Analysis of Factors Affecting the Severity of Automated Vehicle Crashes Using XGBoost Model Combining POI Data" @default.
- W3103655276 cites W2070493638 @default.
- W3103655276 cites W2074491886 @default.
- W3103655276 cites W2077026923 @default.
- W3103655276 cites W2094658656 @default.
- W3103655276 cites W2101849231 @default.
- W3103655276 cites W2102595860 @default.
- W3103655276 cites W2314045446 @default.
- W3103655276 cites W2493168586 @default.
- W3103655276 cites W2509583637 @default.
- W3103655276 cites W2607757716 @default.
- W3103655276 cites W2741964872 @default.
- W3103655276 cites W2766368762 @default.
- W3103655276 cites W2790965127 @default.
- W3103655276 cites W2793474345 @default.
- W3103655276 cites W2793486875 @default.
- W3103655276 cites W2809135338 @default.
- W3103655276 cites W2889331935 @default.
- W3103655276 cites W2891526102 @default.
- W3103655276 cites W2893784831 @default.
- W3103655276 cites W2900742185 @default.
- W3103655276 cites W2903483030 @default.
- W3103655276 cites W2909965413 @default.
- W3103655276 cites W2913463408 @default.
- W3103655276 cites W2915809362 @default.
- W3103655276 cites W2919609362 @default.
- W3103655276 cites W2920087431 @default.
- W3103655276 cites W2921192933 @default.
- W3103655276 cites W2922369796 @default.
- W3103655276 cites W2926668486 @default.
- W3103655276 cites W2931482389 @default.
- W3103655276 cites W2945280005 @default.
- W3103655276 cites W2946259022 @default.
- W3103655276 cites W2956045439 @default.
- W3103655276 cites W2979752067 @default.
- W3103655276 cites W2985526402 @default.
- W3103655276 cites W2989610764 @default.
- W3103655276 cites W2996705655 @default.
- W3103655276 cites W3006324460 @default.
- W3103655276 cites W3006555384 @default.
- W3103655276 cites W3016733660 @default.
- W3103655276 cites W3031386793 @default.
- W3103655276 cites W3038311901 @default.
- W3103655276 cites W3044440748 @default.
- W3103655276 cites W3088518068 @default.
- W3103655276 cites W3105865647 @default.
- W3103655276 cites W316935178 @default.
- W3103655276 cites W853786990 @default.
- W3103655276 doi "https://doi.org/10.1155/2020/8881545" @default.
- W3103655276 hasPublicationYear "2020" @default.
- W3103655276 type Work @default.
- W3103655276 sameAs 3103655276 @default.
- W3103655276 citedByCount "16" @default.
- W3103655276 countsByYear W31036552762021 @default.
- W3103655276 countsByYear W31036552762022 @default.
- W3103655276 countsByYear W31036552762023 @default.
- W3103655276 crossrefType "journal-article" @default.
- W3103655276 hasAuthorship W3103655276A5043571063 @default.
- W3103655276 hasAuthorship W3103655276A5045050311 @default.
- W3103655276 hasAuthorship W3103655276A5064277760 @default.
- W3103655276 hasAuthorship W3103655276A5064530138 @default.
- W3103655276 hasAuthorship W3103655276A5075735395 @default.
- W3103655276 hasBestOaLocation W31036552761 @default.
- W3103655276 hasConcept C105795698 @default.
- W3103655276 hasConcept C121704057 @default.
- W3103655276 hasConcept C127413603 @default.
- W3103655276 hasConcept C154945302 @default.
- W3103655276 hasConcept C183469790 @default.
- W3103655276 hasConcept C199360897 @default.
- W3103655276 hasConcept C22212356 @default.
- W3103655276 hasConcept C3017944768 @default.
- W3103655276 hasConcept C33923547 @default.
- W3103655276 hasConcept C38652104 @default.
- W3103655276 hasConcept C39896193 @default.
- W3103655276 hasConcept C41008148 @default.
- W3103655276 hasConcept C64543145 @default.
- W3103655276 hasConcept C71924100 @default.
- W3103655276 hasConcept C84525736 @default.
- W3103655276 hasConcept C99454951 @default.
- W3103655276 hasConceptScore W3103655276C105795698 @default.
- W3103655276 hasConceptScore W3103655276C121704057 @default.
- W3103655276 hasConceptScore W3103655276C127413603 @default.
- W3103655276 hasConceptScore W3103655276C154945302 @default.
- W3103655276 hasConceptScore W3103655276C183469790 @default.
- W3103655276 hasConceptScore W3103655276C199360897 @default.
- W3103655276 hasConceptScore W3103655276C22212356 @default.
- W3103655276 hasConceptScore W3103655276C3017944768 @default.
- W3103655276 hasConceptScore W3103655276C33923547 @default.
- W3103655276 hasConceptScore W3103655276C38652104 @default.