Matches in SemOpenAlex for { <https://semopenalex.org/work/W3103655887> ?p ?o ?g. }
- W3103655887 endingPage "107318" @default.
- W3103655887 startingPage "107318" @default.
- W3103655887 abstract "Motivated by a real failure dataset in a two-dimensional context, this paper presents an extension of the Markov modulated Poisson process (MMPP) to two dimensions. The one-dimensional MMPP has been proposed for the modeling of dependent and non-exponential inter-failure times (in contexts as queuing, risk or reliability, among others). The novel two-dimensional MMPP allows for dependence between the two sequences of inter-failure times, while at the same time preserves the MMPP properties, marginally. The generalization is based on the Marshall–Olkin exponential distribution. Inference is undertaken for the new model through a method combining a matching moments approach with an Approximate Bayesian Computation (ABC) algorithm. The performance of the method is shown on simulated and real datasets representing times and distances covered between consecutive failures in a public transport company. For the real dataset, some quantities of importance associated with the reliability of the system are estimated as the probabilities and expected number of failures at different times and distances covered by trains until the occurrence of a failure." @default.
- W3103655887 created "2020-11-23" @default.
- W3103655887 creator A5026120923 @default.
- W3103655887 creator A5037822300 @default.
- W3103655887 creator A5043871498 @default.
- W3103655887 creator A5056381720 @default.
- W3103655887 creator A5090172801 @default.
- W3103655887 date "2021-04-01" @default.
- W3103655887 modified "2023-10-15" @default.
- W3103655887 title "A bivariate two-state Markov modulated Poisson process for failure modeling" @default.
- W3103655887 cites W1965175390 @default.
- W3103655887 cites W1965471436 @default.
- W3103655887 cites W1972101442 @default.
- W3103655887 cites W1972861496 @default.
- W3103655887 cites W1975926886 @default.
- W3103655887 cites W2003577957 @default.
- W3103655887 cites W2015042791 @default.
- W3103655887 cites W2016178932 @default.
- W3103655887 cites W2018921789 @default.
- W3103655887 cites W2028767144 @default.
- W3103655887 cites W2034537254 @default.
- W3103655887 cites W2034811696 @default.
- W3103655887 cites W2037047581 @default.
- W3103655887 cites W2037394443 @default.
- W3103655887 cites W2037977636 @default.
- W3103655887 cites W2043108584 @default.
- W3103655887 cites W2044775737 @default.
- W3103655887 cites W2049043719 @default.
- W3103655887 cites W2056835570 @default.
- W3103655887 cites W2065531367 @default.
- W3103655887 cites W2066734968 @default.
- W3103655887 cites W2066906122 @default.
- W3103655887 cites W2072430699 @default.
- W3103655887 cites W2072475310 @default.
- W3103655887 cites W2080536623 @default.
- W3103655887 cites W2081049382 @default.
- W3103655887 cites W2102989554 @default.
- W3103655887 cites W2105294755 @default.
- W3103655887 cites W2132951518 @default.
- W3103655887 cites W2139812092 @default.
- W3103655887 cites W2140575936 @default.
- W3103655887 cites W2144622472 @default.
- W3103655887 cites W2165551776 @default.
- W3103655887 cites W2394689763 @default.
- W3103655887 cites W2485609644 @default.
- W3103655887 cites W2508434657 @default.
- W3103655887 cites W2534552085 @default.
- W3103655887 cites W2737573098 @default.
- W3103655887 cites W2792678327 @default.
- W3103655887 cites W2940992174 @default.
- W3103655887 cites W2975024646 @default.
- W3103655887 cites W2999655797 @default.
- W3103655887 cites W3015952669 @default.
- W3103655887 cites W312742272 @default.
- W3103655887 doi "https://doi.org/10.1016/j.ress.2020.107318" @default.
- W3103655887 hasPublicationYear "2021" @default.
- W3103655887 type Work @default.
- W3103655887 sameAs 3103655887 @default.
- W3103655887 citedByCount "2" @default.
- W3103655887 countsByYear W31036558872022 @default.
- W3103655887 countsByYear W31036558872023 @default.
- W3103655887 crossrefType "journal-article" @default.
- W3103655887 hasAuthorship W3103655887A5026120923 @default.
- W3103655887 hasAuthorship W3103655887A5037822300 @default.
- W3103655887 hasAuthorship W3103655887A5043871498 @default.
- W3103655887 hasAuthorship W3103655887A5056381720 @default.
- W3103655887 hasAuthorship W3103655887A5090172801 @default.
- W3103655887 hasBestOaLocation W31036558872 @default.
- W3103655887 hasConcept C100906024 @default.
- W3103655887 hasConcept C105795698 @default.
- W3103655887 hasConcept C107673813 @default.
- W3103655887 hasConcept C11413529 @default.
- W3103655887 hasConcept C120375044 @default.
- W3103655887 hasConcept C121332964 @default.
- W3103655887 hasConcept C134306372 @default.
- W3103655887 hasConcept C151376022 @default.
- W3103655887 hasConcept C151730666 @default.
- W3103655887 hasConcept C160234255 @default.
- W3103655887 hasConcept C163258240 @default.
- W3103655887 hasConcept C165064840 @default.
- W3103655887 hasConcept C177148314 @default.
- W3103655887 hasConcept C2779343474 @default.
- W3103655887 hasConcept C28826006 @default.
- W3103655887 hasConcept C33923547 @default.
- W3103655887 hasConcept C41008148 @default.
- W3103655887 hasConcept C43214815 @default.
- W3103655887 hasConcept C55350006 @default.
- W3103655887 hasConcept C62520636 @default.
- W3103655887 hasConcept C64341305 @default.
- W3103655887 hasConcept C86803240 @default.
- W3103655887 hasConcept C98763669 @default.
- W3103655887 hasConceptScore W3103655887C100906024 @default.
- W3103655887 hasConceptScore W3103655887C105795698 @default.
- W3103655887 hasConceptScore W3103655887C107673813 @default.
- W3103655887 hasConceptScore W3103655887C11413529 @default.
- W3103655887 hasConceptScore W3103655887C120375044 @default.
- W3103655887 hasConceptScore W3103655887C121332964 @default.
- W3103655887 hasConceptScore W3103655887C134306372 @default.