Matches in SemOpenAlex for { <https://semopenalex.org/work/W3103659081> ?p ?o ?g. }
Showing items 1 to 47 of
47
with 100 items per page.
- W3103659081 abstract "In response to the highly competitive job market at present times, an increased interest in graduate studies has arisen. This has not only burdened applicants but also led to an increased workload on admission faculty members of universities. Any chance of abridging the admission process impelled applicants and faculty workers to look for faster, efficient, and more accurate methods for predicting admissions. The goal approach of this paper is to implement and compare several supervised predictive analysis methods on a labeled dataset based on real applications from the prestigious university of UCLA; Regression, classification, and Ensemble methods are all the supervised methods that are to be employed for prediction. The dataset relies profoundly on the academic performance of the applicants during their undergrad years. The coefficient of determination, as well as precision and accuracy, are the measures used to compare the different models. All predictive methods proved to show accurate results, however; certain methods proved to be more promising than others were. Predictions were obtained within short time frames, which in turn will cut down the time in the admission process." @default.
- W3103659081 created "2020-11-23" @default.
- W3103659081 creator A5007652018 @default.
- W3103659081 creator A5079684017 @default.
- W3103659081 date "2020-03-28" @default.
- W3103659081 modified "2023-09-25" @default.
- W3103659081 title "Prediction of Graduate Admission using Multiple Supervised Machine Learning Models" @default.
- W3103659081 cites W1525426144 @default.
- W3103659081 cites W2039046700 @default.
- W3103659081 cites W2150148859 @default.
- W3103659081 cites W2563330957 @default.
- W3103659081 cites W2792352342 @default.
- W3103659081 cites W2979978950 @default.
- W3103659081 doi "https://doi.org/10.1109/southeastcon44009.2020.9249747" @default.
- W3103659081 hasPublicationYear "2020" @default.
- W3103659081 type Work @default.
- W3103659081 sameAs 3103659081 @default.
- W3103659081 citedByCount "6" @default.
- W3103659081 countsByYear W31036590812021 @default.
- W3103659081 countsByYear W31036590812022 @default.
- W3103659081 countsByYear W31036590812023 @default.
- W3103659081 crossrefType "proceedings-article" @default.
- W3103659081 hasAuthorship W3103659081A5007652018 @default.
- W3103659081 hasAuthorship W3103659081A5079684017 @default.
- W3103659081 hasConcept C119857082 @default.
- W3103659081 hasConcept C154945302 @default.
- W3103659081 hasConcept C41008148 @default.
- W3103659081 hasConceptScore W3103659081C119857082 @default.
- W3103659081 hasConceptScore W3103659081C154945302 @default.
- W3103659081 hasConceptScore W3103659081C41008148 @default.
- W3103659081 hasLocation W31036590811 @default.
- W3103659081 hasOpenAccess W3103659081 @default.
- W3103659081 hasPrimaryLocation W31036590811 @default.
- W3103659081 hasRelatedWork W2961085424 @default.
- W3103659081 hasRelatedWork W3046775127 @default.
- W3103659081 hasRelatedWork W3107474891 @default.
- W3103659081 hasRelatedWork W3170094116 @default.
- W3103659081 hasRelatedWork W3209574120 @default.
- W3103659081 hasRelatedWork W4205958290 @default.
- W3103659081 hasRelatedWork W4286629047 @default.
- W3103659081 hasRelatedWork W4306321456 @default.
- W3103659081 hasRelatedWork W4306674287 @default.
- W3103659081 hasRelatedWork W4224009465 @default.
- W3103659081 isParatext "false" @default.
- W3103659081 isRetracted "false" @default.
- W3103659081 magId "3103659081" @default.
- W3103659081 workType "article" @default.