Matches in SemOpenAlex for { <https://semopenalex.org/work/W3103663760> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W3103663760 abstract "Stochastic State-Space Time-Varying Random Walk models have been developed, allowing the existing Stochastic State Space models to operate directly on irregularly sampled time-series. These TVRW models have been successfully applied to two different classes of models benefiting each class in different ways. The first class of models - State Dependent Parameter (SDP) models and used to investigate the dominant dynamic modes of nonlinear dynamic systems and the non-linearities in these models affected by arbitrary State Variables. In SDP locally linearised models it is assumed that the parameters that describe system’s behaviour changes are dependent upon some aspect of the system (it’s ‘state’). Each parameter can be dependent on one or more states. To estimate the parameters that are changing at a rate related to that of it’s states, the estimation procedure is conducted in the state-space along the potentially multivariate trajectory of the states which drive the parameters. The introduction of the newly developed TVRW models significantly improves parameter estimation, particularly in data rich neighbourhoods of the state-space when the parameter is dependent on more than one state, and the ends of the data-series when the parameter is dependent on one state with few data points. The second class of models are known as Dynamic Harmonic Regression (DHR) models and are used to identify the dominant cycles and trends of time-series. DHR models the assumption is that a signal (such as a time-series) can be broken down into four (unobserved) components occupying different parts of the spectrum: trend, seasonal cycle, other cycles, and a high frequency irregular component. DHR is confined to uniformly sampled time-series. The introduction of the TVRW models allows DHR to operate on irregularly sampled time-series, with the added benefit of forecasting origin no longer being confined to starting at the end of the time-series but can now begin at any point in the future. Additionally, the forecasting sampling rate is no longer limited to the sampling rate of the time-series. Importantly, both classes of model were designed to follow the Data-Based Mechanistic (DBM) approach to modelling environmental systems, where the model structure and parameters are to be determined by the data (Data-Based) and then the subsequent models are to be validated based on their physical interpretation (Mechanistic). The aim is to remove the researcher’s preconceptions from model development in order to eliminate any bias, and then use the researcher’s knowledge to validate the models presented to them. Both classes of model lacked model structure identification procedures and so model structure was determined by the researcher, against the DBM approach. Two different model structure identification procedures, one for SDP and the other for DHR, were developed to bring both classes of models back within the DBM framework. These developments have been presented and tested here on both simulated data and real environmental data, demonstrating their importance, benefits and role in environmental modelling and exploratory data analysis." @default.
- W3103663760 created "2020-11-23" @default.
- W3103663760 creator A5006039277 @default.
- W3103663760 date "2020-01-01" @default.
- W3103663760 modified "2023-09-26" @default.
- W3103663760 title "Developing models for the data-based mechanistic approach to systems analysis:Increasing objectivity and reducing assumptions" @default.
- W3103663760 cites W2112377453 @default.
- W3103663760 cites W2134140719 @default.
- W3103663760 cites W2152336033 @default.
- W3103663760 cites W2623592481 @default.
- W3103663760 hasPublicationYear "2020" @default.
- W3103663760 type Work @default.
- W3103663760 sameAs 3103663760 @default.
- W3103663760 citedByCount "0" @default.
- W3103663760 crossrefType "dissertation" @default.
- W3103663760 hasAuthorship W3103663760A5006039277 @default.
- W3103663760 hasConcept C105795698 @default.
- W3103663760 hasConcept C11413529 @default.
- W3103663760 hasConcept C121332964 @default.
- W3103663760 hasConcept C126255220 @default.
- W3103663760 hasConcept C127491075 @default.
- W3103663760 hasConcept C1276947 @default.
- W3103663760 hasConcept C129537906 @default.
- W3103663760 hasConcept C13662910 @default.
- W3103663760 hasConcept C143724316 @default.
- W3103663760 hasConcept C151406439 @default.
- W3103663760 hasConcept C151730666 @default.
- W3103663760 hasConcept C158622935 @default.
- W3103663760 hasConcept C161584116 @default.
- W3103663760 hasConcept C167928553 @default.
- W3103663760 hasConcept C28826006 @default.
- W3103663760 hasConcept C33923547 @default.
- W3103663760 hasConcept C41008148 @default.
- W3103663760 hasConcept C48103436 @default.
- W3103663760 hasConcept C52918065 @default.
- W3103663760 hasConcept C62520636 @default.
- W3103663760 hasConcept C72434380 @default.
- W3103663760 hasConcept C73586568 @default.
- W3103663760 hasConcept C86803240 @default.
- W3103663760 hasConcept C97355855 @default.
- W3103663760 hasConceptScore W3103663760C105795698 @default.
- W3103663760 hasConceptScore W3103663760C11413529 @default.
- W3103663760 hasConceptScore W3103663760C121332964 @default.
- W3103663760 hasConceptScore W3103663760C126255220 @default.
- W3103663760 hasConceptScore W3103663760C127491075 @default.
- W3103663760 hasConceptScore W3103663760C1276947 @default.
- W3103663760 hasConceptScore W3103663760C129537906 @default.
- W3103663760 hasConceptScore W3103663760C13662910 @default.
- W3103663760 hasConceptScore W3103663760C143724316 @default.
- W3103663760 hasConceptScore W3103663760C151406439 @default.
- W3103663760 hasConceptScore W3103663760C151730666 @default.
- W3103663760 hasConceptScore W3103663760C158622935 @default.
- W3103663760 hasConceptScore W3103663760C161584116 @default.
- W3103663760 hasConceptScore W3103663760C167928553 @default.
- W3103663760 hasConceptScore W3103663760C28826006 @default.
- W3103663760 hasConceptScore W3103663760C33923547 @default.
- W3103663760 hasConceptScore W3103663760C41008148 @default.
- W3103663760 hasConceptScore W3103663760C48103436 @default.
- W3103663760 hasConceptScore W3103663760C52918065 @default.
- W3103663760 hasConceptScore W3103663760C62520636 @default.
- W3103663760 hasConceptScore W3103663760C72434380 @default.
- W3103663760 hasConceptScore W3103663760C73586568 @default.
- W3103663760 hasConceptScore W3103663760C86803240 @default.
- W3103663760 hasConceptScore W3103663760C97355855 @default.
- W3103663760 hasLocation W31036637601 @default.
- W3103663760 hasOpenAccess W3103663760 @default.
- W3103663760 hasPrimaryLocation W31036637601 @default.
- W3103663760 hasRelatedWork W1218802 @default.
- W3103663760 hasRelatedWork W1775863285 @default.
- W3103663760 hasRelatedWork W18684262 @default.
- W3103663760 hasRelatedWork W1916457060 @default.
- W3103663760 hasRelatedWork W1995863175 @default.
- W3103663760 hasRelatedWork W2008903202 @default.
- W3103663760 hasRelatedWork W2206045417 @default.
- W3103663760 hasRelatedWork W2263288567 @default.
- W3103663760 hasRelatedWork W2368224569 @default.
- W3103663760 hasRelatedWork W2460989093 @default.
- W3103663760 hasRelatedWork W2517710958 @default.
- W3103663760 hasRelatedWork W2768394085 @default.
- W3103663760 hasRelatedWork W2812089280 @default.
- W3103663760 hasRelatedWork W3022777309 @default.
- W3103663760 hasRelatedWork W3121845502 @default.
- W3103663760 hasRelatedWork W3123913881 @default.
- W3103663760 hasRelatedWork W3174048265 @default.
- W3103663760 hasRelatedWork W3207063519 @default.
- W3103663760 hasRelatedWork W2183691170 @default.
- W3103663760 hasRelatedWork W72683299 @default.
- W3103663760 isParatext "false" @default.
- W3103663760 isRetracted "false" @default.
- W3103663760 magId "3103663760" @default.
- W3103663760 workType "dissertation" @default.