Matches in SemOpenAlex for { <https://semopenalex.org/work/W3103674517> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W3103674517 endingPage "106486" @default.
- W3103674517 startingPage "106486" @default.
- W3103674517 abstract "Abstract Context: The recent progress of deep learning has shown its promising learning ability in making sense of data, and many fields have utilized this learning ability to learn an effective model, successfully solving their problems. Fault localization has explored and used deep learning to server an aid in debugging, showing the promising results on fault localization. However, as far as we know, there is no detailed studies on evaluating the benefits of using deep learning for locating real faults present in programs. Objective: To understand the benefits of deep learning in locating real faults, this paper explores more about deep learning by studying the effectiveness of fault localization using deep learning for a set of real bugs reported in the widely used programs. Method: We use three representative deep learning architectures (i.e. convolutional neural network, recurrent neural network and multi-layer perceptron) for fault localization, and conduct large-scale experiments on 8 real-world programs equipped with all real faults to evaluate their effectiveness on fault localization. Results: We observe that the localization effectiveness varies considerably among three neural networks in the context of real faults. Specifically, convolutional neural network performs the best in locating real faults, showing an average of 38.97% and 26.22% saving over multi-layer perceptron and recurrent neural network respectively; recurrent neural network and multi-layer perceptron yield comparable effectiveness even if the effectiveness of recurrent neural network is marginally higher than multi-layer perceptron. Conclusion: In context of real faults, convolutional neural network is the most effective for fault localization among the investigated architectures, and we suggest potential factors of deep learning for improving fault localization." @default.
- W3103674517 created "2020-11-23" @default.
- W3103674517 creator A5008199212 @default.
- W3103674517 creator A5010251502 @default.
- W3103674517 creator A5019707070 @default.
- W3103674517 creator A5069596466 @default.
- W3103674517 creator A5070783668 @default.
- W3103674517 creator A5080183182 @default.
- W3103674517 date "2021-03-01" @default.
- W3103674517 modified "2023-10-15" @default.
- W3103674517 title "A study of effectiveness of deep learning in locating real faults" @default.
- W3103674517 cites W1950030762 @default.
- W3103674517 cites W2010833880 @default.
- W3103674517 cites W2018430492 @default.
- W3103674517 cites W2058547057 @default.
- W3103674517 cites W2064675550 @default.
- W3103674517 cites W2070249305 @default.
- W3103674517 cites W2092742242 @default.
- W3103674517 cites W2144106177 @default.
- W3103674517 cites W2162946946 @default.
- W3103674517 cites W2165663378 @default.
- W3103674517 cites W2169805405 @default.
- W3103674517 cites W2343875716 @default.
- W3103674517 cites W2771289545 @default.
- W3103674517 cites W2789767897 @default.
- W3103674517 cites W2793769076 @default.
- W3103674517 cites W2919115771 @default.
- W3103674517 cites W2962715466 @default.
- W3103674517 cites W2962949934 @default.
- W3103674517 doi "https://doi.org/10.1016/j.infsof.2020.106486" @default.
- W3103674517 hasPublicationYear "2021" @default.
- W3103674517 type Work @default.
- W3103674517 sameAs 3103674517 @default.
- W3103674517 citedByCount "23" @default.
- W3103674517 countsByYear W31036745172021 @default.
- W3103674517 countsByYear W31036745172022 @default.
- W3103674517 countsByYear W31036745172023 @default.
- W3103674517 crossrefType "journal-article" @default.
- W3103674517 hasAuthorship W3103674517A5008199212 @default.
- W3103674517 hasAuthorship W3103674517A5010251502 @default.
- W3103674517 hasAuthorship W3103674517A5019707070 @default.
- W3103674517 hasAuthorship W3103674517A5069596466 @default.
- W3103674517 hasAuthorship W3103674517A5070783668 @default.
- W3103674517 hasAuthorship W3103674517A5080183182 @default.
- W3103674517 hasConcept C108583219 @default.
- W3103674517 hasConcept C127413603 @default.
- W3103674517 hasConcept C154945302 @default.
- W3103674517 hasConcept C41008148 @default.
- W3103674517 hasConceptScore W3103674517C108583219 @default.
- W3103674517 hasConceptScore W3103674517C127413603 @default.
- W3103674517 hasConceptScore W3103674517C154945302 @default.
- W3103674517 hasConceptScore W3103674517C41008148 @default.
- W3103674517 hasFunder F4320321001 @default.
- W3103674517 hasFunder F4320335787 @default.
- W3103674517 hasFunder F4320335833 @default.
- W3103674517 hasFunder F4320336367 @default.
- W3103674517 hasLocation W31036745171 @default.
- W3103674517 hasOpenAccess W3103674517 @default.
- W3103674517 hasPrimaryLocation W31036745171 @default.
- W3103674517 hasRelatedWork W2126887587 @default.
- W3103674517 hasRelatedWork W2731899572 @default.
- W3103674517 hasRelatedWork W2899084033 @default.
- W3103674517 hasRelatedWork W2939353110 @default.
- W3103674517 hasRelatedWork W2941846814 @default.
- W3103674517 hasRelatedWork W2948658236 @default.
- W3103674517 hasRelatedWork W3009238340 @default.
- W3103674517 hasRelatedWork W3118091236 @default.
- W3103674517 hasRelatedWork W3215138031 @default.
- W3103674517 hasRelatedWork W4230611425 @default.
- W3103674517 hasVolume "131" @default.
- W3103674517 isParatext "false" @default.
- W3103674517 isRetracted "false" @default.
- W3103674517 magId "3103674517" @default.
- W3103674517 workType "article" @default.