Matches in SemOpenAlex for { <https://semopenalex.org/work/W3103681092> ?p ?o ?g. }
- W3103681092 endingPage "42" @default.
- W3103681092 startingPage "25" @default.
- W3103681092 abstract "DSS serve the management, operations, and planning levels of an organization and help to make decisions, which may be rapidly changing and not easily specified in advance. Data mining has a vital role to extract important information to help in decision making of a decision support system. Integration of data mining and decision support systems (DSS) can lead to the improved performance and can enable the tackling of new types of problems. Artificial Intelligence methods are improving the quality of decision support, and have become embedded in many applications ranges from ant locking automobile brakes to these days interactive search engines. It provides various machine learning techniques to support data mining. The classification is one of the main and valuable tasks of data mining. Several types of classification algorithms have been suggested, tested and compared to determine the future trends based on unseen data. There has been no single algorithm found to be superior over all others for all data sets. The objective of this paper is to compare various classification algorithms that have been frequently used in data mining for decision support systems. Three decision trees based algorithms, one artificial neural network, one statistical, one support vector machines with and without ada boost and one clustering algorithm are tested and compared on four data sets from different domains in terms of predictive accuracy, error rate, classification index, comprehensibility and training time. Experimental results demonstrate that Genetic Algorithm (GA) and support vector machines based algorithms are better in terms of predictive accuracy. SVM without adaboost shall be the first choice in context of speed and predictive accuracy. Adaboost improves the accuracy of SVM but on the cost of large training time." @default.
- W3103681092 created "2020-11-23" @default.
- W3103681092 creator A5021840195 @default.
- W3103681092 date "2012-09-30" @default.
- W3103681092 modified "2023-10-03" @default.
- W3103681092 title "A Benchmark to Select Data Mining Based Classification Algorithms for Business Intelligence and Decision Support Systems" @default.
- W3103681092 cites W1488904299 @default.
- W3103681092 cites W1510671410 @default.
- W3103681092 cites W1527282796 @default.
- W3103681092 cites W1602306524 @default.
- W3103681092 cites W1837558564 @default.
- W3103681092 cites W1941918124 @default.
- W3103681092 cites W1965924510 @default.
- W3103681092 cites W1973510656 @default.
- W3103681092 cites W1985995090 @default.
- W3103681092 cites W1997010655 @default.
- W3103681092 cites W2006345381 @default.
- W3103681092 cites W2014168785 @default.
- W3103681092 cites W2022892187 @default.
- W3103681092 cites W2032210760 @default.
- W3103681092 cites W2033626294 @default.
- W3103681092 cites W2038530011 @default.
- W3103681092 cites W2069784436 @default.
- W3103681092 cites W2107432340 @default.
- W3103681092 cites W2111437117 @default.
- W3103681092 cites W2126245399 @default.
- W3103681092 cites W2140190241 @default.
- W3103681092 cites W2148044468 @default.
- W3103681092 cites W2149706766 @default.
- W3103681092 cites W2153896900 @default.
- W3103681092 cites W2156909104 @default.
- W3103681092 cites W2161349318 @default.
- W3103681092 cites W2162980868 @default.
- W3103681092 cites W2168504237 @default.
- W3103681092 cites W2223283584 @default.
- W3103681092 cites W2483507780 @default.
- W3103681092 cites W2484707038 @default.
- W3103681092 cites W46219046 @default.
- W3103681092 doi "https://doi.org/10.5121/ijdkp.2012.2503" @default.
- W3103681092 hasPublicationYear "2012" @default.
- W3103681092 type Work @default.
- W3103681092 sameAs 3103681092 @default.
- W3103681092 citedByCount "15" @default.
- W3103681092 countsByYear W31036810922014 @default.
- W3103681092 countsByYear W31036810922017 @default.
- W3103681092 countsByYear W31036810922018 @default.
- W3103681092 countsByYear W31036810922019 @default.
- W3103681092 countsByYear W31036810922020 @default.
- W3103681092 countsByYear W31036810922021 @default.
- W3103681092 countsByYear W31036810922022 @default.
- W3103681092 crossrefType "journal-article" @default.
- W3103681092 hasAuthorship W3103681092A5021840195 @default.
- W3103681092 hasBestOaLocation W31036810921 @default.
- W3103681092 hasConcept C107327155 @default.
- W3103681092 hasConcept C110083411 @default.
- W3103681092 hasConcept C119857082 @default.
- W3103681092 hasConcept C12267149 @default.
- W3103681092 hasConcept C124101348 @default.
- W3103681092 hasConcept C13280743 @default.
- W3103681092 hasConcept C141404830 @default.
- W3103681092 hasConcept C154945302 @default.
- W3103681092 hasConcept C185798385 @default.
- W3103681092 hasConcept C205649164 @default.
- W3103681092 hasConcept C41008148 @default.
- W3103681092 hasConcept C50644808 @default.
- W3103681092 hasConcept C73555534 @default.
- W3103681092 hasConcept C84525736 @default.
- W3103681092 hasConceptScore W3103681092C107327155 @default.
- W3103681092 hasConceptScore W3103681092C110083411 @default.
- W3103681092 hasConceptScore W3103681092C119857082 @default.
- W3103681092 hasConceptScore W3103681092C12267149 @default.
- W3103681092 hasConceptScore W3103681092C124101348 @default.
- W3103681092 hasConceptScore W3103681092C13280743 @default.
- W3103681092 hasConceptScore W3103681092C141404830 @default.
- W3103681092 hasConceptScore W3103681092C154945302 @default.
- W3103681092 hasConceptScore W3103681092C185798385 @default.
- W3103681092 hasConceptScore W3103681092C205649164 @default.
- W3103681092 hasConceptScore W3103681092C41008148 @default.
- W3103681092 hasConceptScore W3103681092C50644808 @default.
- W3103681092 hasConceptScore W3103681092C73555534 @default.
- W3103681092 hasConceptScore W3103681092C84525736 @default.
- W3103681092 hasIssue "5" @default.
- W3103681092 hasLocation W31036810921 @default.
- W3103681092 hasLocation W31036810922 @default.
- W3103681092 hasLocation W31036810923 @default.
- W3103681092 hasOpenAccess W3103681092 @default.
- W3103681092 hasPrimaryLocation W31036810921 @default.
- W3103681092 hasRelatedWork W1987859285 @default.
- W3103681092 hasRelatedWork W1996541855 @default.
- W3103681092 hasRelatedWork W2911198546 @default.
- W3103681092 hasRelatedWork W2995115464 @default.
- W3103681092 hasRelatedWork W3127425528 @default.
- W3103681092 hasRelatedWork W3204641204 @default.
- W3103681092 hasRelatedWork W4200057378 @default.
- W3103681092 hasRelatedWork W4200059385 @default.
- W3103681092 hasRelatedWork W4249229055 @default.
- W3103681092 hasRelatedWork W4361795583 @default.
- W3103681092 hasVolume "2" @default.