Matches in SemOpenAlex for { <https://semopenalex.org/work/W3103702404> ?p ?o ?g. }
- W3103702404 endingPage "741" @default.
- W3103702404 startingPage "729" @default.
- W3103702404 abstract "Low-dose CT image reconstruction has been a popular research topic in recent years. A typical reconstruction method based on post-log measurements is called penalized weighted-least squares (PWLS). Due to the underlying limitations of the post-log statistical model, the PWLS reconstruction quality is often degraded in low-dose scans. This paper investigates a shifted-Poisson (SP) model based likelihood function that uses the pre-log raw measurements that better represents the measurement statistics, together with a data-driven regularizer exploiting a Union of Learned TRAnsforms (SPULTRA). Both the SP induced data-fidelity term and the regularizer in the proposed framework are nonconvex. The proposed SPULTRA algorithm uses quadratic surrogate functions for the SP induced data-fidelity term. Each iteration involves a quadratic subproblem for updating the image, and a sparse coding and clustering subproblem that has a closed-form solution. The SPULTRA algorithm has a similar computational cost per iteration as its recent counterpart PWLS-ULTRA that uses post-log measurements, and it provides better image reconstruction quality than PWLS-ULTRA, especially in low-dose scans." @default.
- W3103702404 created "2020-11-23" @default.
- W3103702404 creator A5020701989 @default.
- W3103702404 creator A5027207271 @default.
- W3103702404 creator A5058676706 @default.
- W3103702404 creator A5085257241 @default.
- W3103702404 date "2020-03-01" @default.
- W3103702404 modified "2023-10-14" @default.
- W3103702404 title "SPULTRA: Low-Dose CT Image Reconstruction With Joint Statistical and Learned Image Models" @default.
- W3103702404 cites W1644004607 @default.
- W3103702404 cites W1974218973 @default.
- W3103702404 cites W1995758426 @default.
- W3103702404 cites W1999320095 @default.
- W3103702404 cites W2003624223 @default.
- W3103702404 cites W2037511378 @default.
- W3103702404 cites W2048417186 @default.
- W3103702404 cites W2049641710 @default.
- W3103702404 cites W2049856752 @default.
- W3103702404 cites W2053958583 @default.
- W3103702404 cites W2054218460 @default.
- W3103702404 cites W2058956138 @default.
- W3103702404 cites W2075157914 @default.
- W3103702404 cites W2089221057 @default.
- W3103702404 cites W2090457307 @default.
- W3103702404 cites W2090475827 @default.
- W3103702404 cites W2094366314 @default.
- W3103702404 cites W2096243498 @default.
- W3103702404 cites W2098092211 @default.
- W3103702404 cites W2114286204 @default.
- W3103702404 cites W2118916039 @default.
- W3103702404 cites W2122345610 @default.
- W3103702404 cites W2131720521 @default.
- W3103702404 cites W2141039087 @default.
- W3103702404 cites W2149300224 @default.
- W3103702404 cites W2149400409 @default.
- W3103702404 cites W2152142562 @default.
- W3103702404 cites W2154741779 @default.
- W3103702404 cites W2157099732 @default.
- W3103702404 cites W2157812230 @default.
- W3103702404 cites W2165399609 @default.
- W3103702404 cites W2169010307 @default.
- W3103702404 cites W2189938900 @default.
- W3103702404 cites W2319126251 @default.
- W3103702404 cites W2349282589 @default.
- W3103702404 cites W2508323711 @default.
- W3103702404 cites W2511941590 @default.
- W3103702404 cites W2512266304 @default.
- W3103702404 cites W2552453838 @default.
- W3103702404 cites W2567331605 @default.
- W3103702404 cites W2578922756 @default.
- W3103702404 cites W2754956769 @default.
- W3103702404 cites W2773688131 @default.
- W3103702404 cites W2793419304 @default.
- W3103702404 cites W2795777276 @default.
- W3103702404 cites W2911459672 @default.
- W3103702404 cites W2952026614 @default.
- W3103702404 cites W3103528285 @default.
- W3103702404 cites W3103586216 @default.
- W3103702404 cites W3105699558 @default.
- W3103702404 cites W4249513058 @default.
- W3103702404 cites W4296142362 @default.
- W3103702404 doi "https://doi.org/10.1109/tmi.2019.2934933" @default.
- W3103702404 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7170173" @default.
- W3103702404 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31425021" @default.
- W3103702404 hasPublicationYear "2020" @default.
- W3103702404 type Work @default.
- W3103702404 sameAs 3103702404 @default.
- W3103702404 citedByCount "21" @default.
- W3103702404 countsByYear W31037024042019 @default.
- W3103702404 countsByYear W31037024042020 @default.
- W3103702404 countsByYear W31037024042021 @default.
- W3103702404 countsByYear W31037024042022 @default.
- W3103702404 countsByYear W31037024042023 @default.
- W3103702404 crossrefType "journal-article" @default.
- W3103702404 hasAuthorship W3103702404A5020701989 @default.
- W3103702404 hasAuthorship W3103702404A5027207271 @default.
- W3103702404 hasAuthorship W3103702404A5058676706 @default.
- W3103702404 hasAuthorship W3103702404A5085257241 @default.
- W3103702404 hasBestOaLocation W31037024042 @default.
- W3103702404 hasConcept C100906024 @default.
- W3103702404 hasConcept C105795698 @default.
- W3103702404 hasConcept C11413529 @default.
- W3103702404 hasConcept C115961682 @default.
- W3103702404 hasConcept C129844170 @default.
- W3103702404 hasConcept C141379421 @default.
- W3103702404 hasConcept C153180895 @default.
- W3103702404 hasConcept C154945302 @default.
- W3103702404 hasConcept C2524010 @default.
- W3103702404 hasConcept C33923547 @default.
- W3103702404 hasConcept C41008148 @default.
- W3103702404 hasConcept C55020928 @default.
- W3103702404 hasConcept C73555534 @default.
- W3103702404 hasConcept C77637269 @default.
- W3103702404 hasConceptScore W3103702404C100906024 @default.
- W3103702404 hasConceptScore W3103702404C105795698 @default.
- W3103702404 hasConceptScore W3103702404C11413529 @default.
- W3103702404 hasConceptScore W3103702404C115961682 @default.
- W3103702404 hasConceptScore W3103702404C129844170 @default.