Matches in SemOpenAlex for { <https://semopenalex.org/work/W3103931160> ?p ?o ?g. }
- W3103931160 endingPage "A58" @default.
- W3103931160 startingPage "A58" @default.
- W3103931160 abstract "Context. Three-dimensional models that account for chemistry are useful tools to predict the chemical composition of (exo)planet and brown dwarf atmospheres and interpret observations of future telescopes, such as James Webb Space Telescope (JWST) and Atmospheric Remote-sensing Infrared Exoplanet Large-survey (ARIEL). Recent Juno observations of the NH 3 tropospheric distribution in Jupiter also indicate that 3D chemical modelling may be necessary to constrain the deep composition of the giant planets of the solar system. However, due to the high computational cost of chemistry calculations, 3D chemical modelling has so far been limited. Aims. Our goal is to develop a reduced chemical scheme from the full chemical scheme of Venot et al. 2012 (A&A, 546, A43) able to reproduce accurately the vertical profiles of the observable species (H 2 O, CH 4 , CO, CO 2 , NH 3 , and HCN). This reduced scheme should have a size compatible with three-dimensional models and be usable across a large parameter space (e.g. temperature, pressure, elemental abundance). The absence of C 2 H 2 from our reduced chemical scheme prevents its use to study hot C-rich atmospheres. Methods. We used a mechanism-processing utility program designed for use with Chemkin-Pro to reduce a full detailed mechanism. The ANSYS © Chemkin-Pro Reaction Workbench allows the reduction of a reaction mechanism for a given list of target species and a specified level of accuracy. We took a warm giant exoplanet with solar abundances, GJ 436b, as a template to perform the scheme reduction. To assess the validity of our reduced scheme, we took the uncertainties on the reaction rates into account in Monte Carlo runs with the full scheme, and compared the resulting vertical profiles with the reduced scheme. We explored the range of validity of the reduced scheme even further by applying our new reduced scheme to GJ 436b’s atmosphere with different elemental abundances, to three other exoplanet atmospheres (GJ 1214b, HD 209458b, HD 189733b), a brown dwarf atmosphere (SD 1110), and to the troposphere of two giant planets of the solar system (Uranus and Neptune). Results. For all cases except one, the abundances predicted by the reduced scheme remain within the error bars of the model with the full scheme. Expectedly, we found important differences that cannot be neglected only for the C-rich hot atmosphere. The reduced chemical scheme allows more rapid runs than the full scheme from which it is derived (~30× faster). Conclusions. We have developed a reduced scheme containing 30 species and 181 reversible reactions. This scheme has a large range of validity and can be used to study all kinds of warm atmospheres, except hot C-rich ones that contain a high amount of C 2 H 2 . It can be used in 1D models, for fast computations, but also in 3D models for hot giant (exo)planet and brown dwarf atmospheres." @default.
- W3103931160 created "2020-11-23" @default.
- W3103931160 creator A5017788735 @default.
- W3103931160 creator A5029764095 @default.
- W3103931160 creator A5038874544 @default.
- W3103931160 creator A5040132322 @default.
- W3103931160 creator A5041370375 @default.
- W3103931160 creator A5079689961 @default.
- W3103931160 creator A5086025756 @default.
- W3103931160 creator A5088656093 @default.
- W3103931160 date "2019-04-01" @default.
- W3103931160 modified "2023-10-17" @default.
- W3103931160 title "Reduced chemical scheme for modelling warm to hot hydrogen-dominated atmospheres" @default.
- W3103931160 cites W1881162025 @default.
- W3103931160 cites W1983893587 @default.
- W3103931160 cites W1984361685 @default.
- W3103931160 cites W1987265711 @default.
- W3103931160 cites W1992028332 @default.
- W3103931160 cites W1995497869 @default.
- W3103931160 cites W1996606603 @default.
- W3103931160 cites W1997903375 @default.
- W3103931160 cites W2000264468 @default.
- W3103931160 cites W2001131209 @default.
- W3103931160 cites W2003674417 @default.
- W3103931160 cites W2011354068 @default.
- W3103931160 cites W2013799003 @default.
- W3103931160 cites W2016321515 @default.
- W3103931160 cites W2024754002 @default.
- W3103931160 cites W2045080175 @default.
- W3103931160 cites W2050057751 @default.
- W3103931160 cites W2070769390 @default.
- W3103931160 cites W2074044119 @default.
- W3103931160 cites W2077191936 @default.
- W3103931160 cites W2081624256 @default.
- W3103931160 cites W2102869773 @default.
- W3103931160 cites W2124755620 @default.
- W3103931160 cites W2127232021 @default.
- W3103931160 cites W2146622488 @default.
- W3103931160 cites W2155164325 @default.
- W3103931160 cites W2160202036 @default.
- W3103931160 cites W2207413084 @default.
- W3103931160 cites W2233399347 @default.
- W3103931160 cites W2268685673 @default.
- W3103931160 cites W2467562193 @default.
- W3103931160 cites W2471423568 @default.
- W3103931160 cites W2518857310 @default.
- W3103931160 cites W2546973468 @default.
- W3103931160 cites W2597084198 @default.
- W3103931160 cites W2739553801 @default.
- W3103931160 cites W2886500915 @default.
- W3103931160 cites W2892338809 @default.
- W3103931160 cites W2896592021 @default.
- W3103931160 cites W2963214390 @default.
- W3103931160 cites W3098427312 @default.
- W3103931160 cites W3099954015 @default.
- W3103931160 cites W3100763381 @default.
- W3103931160 cites W3101296279 @default.
- W3103931160 cites W3101690949 @default.
- W3103931160 cites W3102244592 @default.
- W3103931160 cites W3102373850 @default.
- W3103931160 cites W3103989206 @default.
- W3103931160 cites W3105913100 @default.
- W3103931160 cites W3107126241 @default.
- W3103931160 cites W3122323163 @default.
- W3103931160 cites W3123128739 @default.
- W3103931160 cites W4289886311 @default.
- W3103931160 doi "https://doi.org/10.1051/0004-6361/201834861" @default.
- W3103931160 hasPublicationYear "2019" @default.
- W3103931160 type Work @default.
- W3103931160 sameAs 3103931160 @default.
- W3103931160 citedByCount "24" @default.
- W3103931160 countsByYear W31039311602019 @default.
- W3103931160 countsByYear W31039311602020 @default.
- W3103931160 countsByYear W31039311602021 @default.
- W3103931160 countsByYear W31039311602022 @default.
- W3103931160 countsByYear W31039311602023 @default.
- W3103931160 crossrefType "journal-article" @default.
- W3103931160 hasAuthorship W3103931160A5017788735 @default.
- W3103931160 hasAuthorship W3103931160A5029764095 @default.
- W3103931160 hasAuthorship W3103931160A5038874544 @default.
- W3103931160 hasAuthorship W3103931160A5040132322 @default.
- W3103931160 hasAuthorship W3103931160A5041370375 @default.
- W3103931160 hasAuthorship W3103931160A5079689961 @default.
- W3103931160 hasAuthorship W3103931160A5086025756 @default.
- W3103931160 hasAuthorship W3103931160A5088656093 @default.
- W3103931160 hasBestOaLocation W31039311601 @default.
- W3103931160 hasConcept C115957382 @default.
- W3103931160 hasConcept C121332964 @default.
- W3103931160 hasConcept C135889238 @default.
- W3103931160 hasConcept C151730666 @default.
- W3103931160 hasConcept C153294291 @default.
- W3103931160 hasConcept C163479331 @default.
- W3103931160 hasConcept C180920033 @default.
- W3103931160 hasConcept C196939603 @default.
- W3103931160 hasConcept C206489886 @default.
- W3103931160 hasConcept C2779343474 @default.
- W3103931160 hasConcept C44870925 @default.
- W3103931160 hasConcept C51244244 @default.