Matches in SemOpenAlex for { <https://semopenalex.org/work/W3103997817> ?p ?o ?g. }
- W3103997817 endingPage "64" @default.
- W3103997817 startingPage "64" @default.
- W3103997817 abstract "We adopt the deep learning method CASI (Convolutional Approach to Shell Identification) and extend it to 3D (CASI-3D) to identify signatures of stellar feedback in molecular line spectra, such as 13CO. We adopt magneto-hydrodynamics simulations that study the impact of stellar winds in a turbulent molecular cloud as an input to generate synthetic observations. We apply the 3D radiation transfer code radmc-3d to model 13CO (J=1-0) line emission from the simulated clouds. We train two CASI-3d models: ME1 predicts only the position of feedback, while MF predicts the fraction of the mass coming from feedback in each voxel. We adopt 75% of the synthetic observations as the training set and assess the accuracy of the two models with the remaining data. We demonstrate that model ME1 identifies bubbles in simulated data with 95% accuracy, and model MF predicts the bubble mass within 4% of the true value. We use bubbles previously visually identified in Taurus in 13CO to validate the models and show both perform well on the highest confidence bubbles. We apply our two models on the full 98 deg2 FCRAO 13CO survey of the Taurus cloud. Models ME1 and MF predict feedback gas mass of 2894 M and 302 M, respectively. When including a correction factor for missing energy due to the limited velocity range of the 13CO data cube, model ME1 predicts feedback kinetic energies of 4.0*1e46 ergs and 1.5*1e47 ergs with/without subtracting the cloud velocity gradient. Model MF predicts feedback kinetic energy of 9.6*1e45 ergs and 2.8*1e46 ergs with/without subtracting the cloud velocity gradient. Model ME1 predicts bubble locations and properties consistent with previous visually identified bubbles. However, model MF demonstrates that feedback properties computed based on visual identifications are significantly overestimated due to line of sight confusion and contamination from background and foreground gas." @default.
- W3103997817 created "2020-11-23" @default.
- W3103997817 creator A5013062507 @default.
- W3103997817 creator A5018942506 @default.
- W3103997817 creator A5040714277 @default.
- W3103997817 creator A5040792965 @default.
- W3103997817 date "2020-02-12" @default.
- W3103997817 modified "2023-10-14" @default.
- W3103997817 title "Application of Convolutional Neural Networks to Identify Stellar Feedback Bubbles in CO Emission" @default.
- W3103997817 cites W1926942421 @default.
- W3103997817 cites W1980100166 @default.
- W3103997817 cites W1984278231 @default.
- W3103997817 cites W1996739833 @default.
- W3103997817 cites W2008783600 @default.
- W3103997817 cites W2023344645 @default.
- W3103997817 cites W2027336730 @default.
- W3103997817 cites W2039874334 @default.
- W3103997817 cites W2044807542 @default.
- W3103997817 cites W2050387709 @default.
- W3103997817 cites W2067056886 @default.
- W3103997817 cites W2078875725 @default.
- W3103997817 cites W2108064551 @default.
- W3103997817 cites W2117874695 @default.
- W3103997817 cites W2126792076 @default.
- W3103997817 cites W2128129957 @default.
- W3103997817 cites W2147764886 @default.
- W3103997817 cites W2154374684 @default.
- W3103997817 cites W2547249076 @default.
- W3103997817 cites W2732513030 @default.
- W3103997817 cites W2767662255 @default.
- W3103997817 cites W2890048649 @default.
- W3103997817 cites W2945314646 @default.
- W3103997817 cites W2947133089 @default.
- W3103997817 cites W3098056368 @default.
- W3103997817 cites W3098333307 @default.
- W3103997817 cites W3098491981 @default.
- W3103997817 cites W3099020482 @default.
- W3103997817 cites W3099240706 @default.
- W3103997817 cites W3099650555 @default.
- W3103997817 cites W3099889244 @default.
- W3103997817 cites W3100294950 @default.
- W3103997817 cites W3100720082 @default.
- W3103997817 cites W3101049228 @default.
- W3103997817 cites W3102307870 @default.
- W3103997817 cites W3104716565 @default.
- W3103997817 cites W3105413723 @default.
- W3103997817 cites W3124563349 @default.
- W3103997817 cites W4242348366 @default.
- W3103997817 doi "https://doi.org/10.3847/1538-4357/ab6607" @default.
- W3103997817 hasPublicationYear "2020" @default.
- W3103997817 type Work @default.
- W3103997817 sameAs 3103997817 @default.
- W3103997817 citedByCount "12" @default.
- W3103997817 countsByYear W31039978172020 @default.
- W3103997817 countsByYear W31039978172021 @default.
- W3103997817 countsByYear W31039978172022 @default.
- W3103997817 countsByYear W31039978172023 @default.
- W3103997817 crossrefType "journal-article" @default.
- W3103997817 hasAuthorship W3103997817A5013062507 @default.
- W3103997817 hasAuthorship W3103997817A5018942506 @default.
- W3103997817 hasAuthorship W3103997817A5040714277 @default.
- W3103997817 hasAuthorship W3103997817A5040792965 @default.
- W3103997817 hasBestOaLocation W31039978171 @default.
- W3103997817 hasConcept C121332964 @default.
- W3103997817 hasConcept C150846664 @default.
- W3103997817 hasConcept C154945302 @default.
- W3103997817 hasConcept C198352243 @default.
- W3103997817 hasConcept C2524010 @default.
- W3103997817 hasConcept C30475298 @default.
- W3103997817 hasConcept C33923547 @default.
- W3103997817 hasConcept C41008148 @default.
- W3103997817 hasConcept C44870925 @default.
- W3103997817 hasConcept C81363708 @default.
- W3103997817 hasConcept C86021447 @default.
- W3103997817 hasConceptScore W3103997817C121332964 @default.
- W3103997817 hasConceptScore W3103997817C150846664 @default.
- W3103997817 hasConceptScore W3103997817C154945302 @default.
- W3103997817 hasConceptScore W3103997817C198352243 @default.
- W3103997817 hasConceptScore W3103997817C2524010 @default.
- W3103997817 hasConceptScore W3103997817C30475298 @default.
- W3103997817 hasConceptScore W3103997817C33923547 @default.
- W3103997817 hasConceptScore W3103997817C41008148 @default.
- W3103997817 hasConceptScore W3103997817C44870925 @default.
- W3103997817 hasConceptScore W3103997817C81363708 @default.
- W3103997817 hasConceptScore W3103997817C86021447 @default.
- W3103997817 hasIssue "1" @default.
- W3103997817 hasLocation W31039978171 @default.
- W3103997817 hasLocation W31039978172 @default.
- W3103997817 hasLocation W31039978173 @default.
- W3103997817 hasOpenAccess W3103997817 @default.
- W3103997817 hasPrimaryLocation W31039978171 @default.
- W3103997817 hasRelatedWork W179156129 @default.
- W3103997817 hasRelatedWork W2008086601 @default.
- W3103997817 hasRelatedWork W2010133960 @default.
- W3103997817 hasRelatedWork W2038964100 @default.
- W3103997817 hasRelatedWork W2342416117 @default.
- W3103997817 hasRelatedWork W3098791626 @default.
- W3103997817 hasRelatedWork W3099818359 @default.