Matches in SemOpenAlex for { <https://semopenalex.org/work/W3104135675> ?p ?o ?g. }
- W3104135675 endingPage "696" @default.
- W3104135675 startingPage "686" @default.
- W3104135675 abstract "Abstract Clinical workflows in oncology rely on predictive and prognostic molecular biomarkers. However, the growing number of these complex biomarkers tends to increase the cost and time for decision-making in routine daily oncology practice; furthermore, biomarkers often require tumour tissue on top of routine diagnostic material. Nevertheless, routinely available tumour tissue contains an abundance of clinically relevant information that is currently not fully exploited. Advances in deep learning (DL), an artificial intelligence (AI) technology, have enabled the extraction of previously hidden information directly from routine histology images of cancer, providing potentially clinically useful information. Here, we outline emerging concepts of how DL can extract biomarkers directly from histology images and summarise studies of basic and advanced image analysis for cancer histology. Basic image analysis tasks include detection, grading and subtyping of tumour tissue in histology images; they are aimed at automating pathology workflows and consequently do not immediately translate into clinical decisions. Exceeding such basic approaches, DL has also been used for advanced image analysis tasks, which have the potential of directly affecting clinical decision-making processes. These advanced approaches include inference of molecular features, prediction of survival and end-to-end prediction of therapy response. Predictions made by such DL systems could simplify and enrich clinical decision-making, but require rigorous external validation in clinical settings." @default.
- W3104135675 created "2020-11-23" @default.
- W3104135675 creator A5000874547 @default.
- W3104135675 creator A5029231574 @default.
- W3104135675 creator A5031626209 @default.
- W3104135675 creator A5060593126 @default.
- W3104135675 creator A5071494882 @default.
- W3104135675 creator A5086466437 @default.
- W3104135675 date "2020-11-18" @default.
- W3104135675 modified "2023-10-12" @default.
- W3104135675 title "Deep learning in cancer pathology: a new generation of clinical biomarkers" @default.
- W3104135675 cites W1982906652 @default.
- W3104135675 cites W2006940889 @default.
- W3104135675 cites W2058794142 @default.
- W3104135675 cites W2078502914 @default.
- W3104135675 cites W2504150216 @default.
- W3104135675 cites W2507595511 @default.
- W3104135675 cites W2591757282 @default.
- W3104135675 cites W2594760301 @default.
- W3104135675 cites W2607075141 @default.
- W3104135675 cites W2620578070 @default.
- W3104135675 cites W2622499649 @default.
- W3104135675 cites W2624310346 @default.
- W3104135675 cites W2626025027 @default.
- W3104135675 cites W2743605523 @default.
- W3104135675 cites W2754327139 @default.
- W3104135675 cites W2760946358 @default.
- W3104135675 cites W2761668583 @default.
- W3104135675 cites W2770156338 @default.
- W3104135675 cites W2785671534 @default.
- W3104135675 cites W2794803511 @default.
- W3104135675 cites W2801806358 @default.
- W3104135675 cites W2805734855 @default.
- W3104135675 cites W2806853752 @default.
- W3104135675 cites W2808445260 @default.
- W3104135675 cites W2889089723 @default.
- W3104135675 cites W2892053105 @default.
- W3104135675 cites W2896424462 @default.
- W3104135675 cites W2900936384 @default.
- W3104135675 cites W2914568698 @default.
- W3104135675 cites W2940141831 @default.
- W3104135675 cites W2945574311 @default.
- W3104135675 cites W2946185430 @default.
- W3104135675 cites W2946404782 @default.
- W3104135675 cites W2948930564 @default.
- W3104135675 cites W2954732554 @default.
- W3104135675 cites W2956228567 @default.
- W3104135675 cites W2963395517 @default.
- W3104135675 cites W2963652908 @default.
- W3104135675 cites W2966647688 @default.
- W3104135675 cites W2966884791 @default.
- W3104135675 cites W2971376088 @default.
- W3104135675 cites W2972214324 @default.
- W3104135675 cites W2972784366 @default.
- W3104135675 cites W2973237362 @default.
- W3104135675 cites W2978882452 @default.
- W3104135675 cites W2978886033 @default.
- W3104135675 cites W2979072923 @default.
- W3104135675 cites W2980804896 @default.
- W3104135675 cites W2980963825 @default.
- W3104135675 cites W2981358604 @default.
- W3104135675 cites W2981602595 @default.
- W3104135675 cites W2992955766 @default.
- W3104135675 cites W2998175747 @default.
- W3104135675 cites W2999091210 @default.
- W3104135675 cites W2999399991 @default.
- W3104135675 cites W3004016611 @default.
- W3104135675 cites W3004053956 @default.
- W3104135675 cites W3004475955 @default.
- W3104135675 cites W3005082972 @default.
- W3104135675 cites W3007100994 @default.
- W3104135675 cites W3007110023 @default.
- W3104135675 cites W3007464329 @default.
- W3104135675 cites W3007748798 @default.
- W3104135675 cites W3010168554 @default.
- W3104135675 cites W3011202100 @default.
- W3104135675 cites W3036901136 @default.
- W3104135675 cites W3043602140 @default.
- W3104135675 cites W3044996171 @default.
- W3104135675 cites W3046129945 @default.
- W3104135675 cites W3046305306 @default.
- W3104135675 cites W3098150009 @default.
- W3104135675 cites W3105282616 @default.
- W3104135675 doi "https://doi.org/10.1038/s41416-020-01122-x" @default.
- W3104135675 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7884739" @default.
- W3104135675 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33204028" @default.
- W3104135675 hasPublicationYear "2020" @default.
- W3104135675 type Work @default.
- W3104135675 sameAs 3104135675 @default.
- W3104135675 citedByCount "230" @default.
- W3104135675 countsByYear W31041356752020 @default.
- W3104135675 countsByYear W31041356752021 @default.
- W3104135675 countsByYear W31041356752022 @default.
- W3104135675 countsByYear W31041356752023 @default.
- W3104135675 crossrefType "journal-article" @default.
- W3104135675 hasAuthorship W3104135675A5000874547 @default.
- W3104135675 hasAuthorship W3104135675A5029231574 @default.
- W3104135675 hasAuthorship W3104135675A5031626209 @default.