Matches in SemOpenAlex for { <https://semopenalex.org/work/W3104154098> ?p ?o ?g. }
- W3104154098 endingPage "4104" @default.
- W3104154098 startingPage "4091" @default.
- W3104154098 abstract "Recently, several discriminative learning approaches have been proposed for effective image restoration, achieving convincing trade-off between image quality and computational efficiency. However, these methods require separate training for each restoration task (e.g., denoising, deblurring, demosaicing) and problem condition (e.g., noise level of input images). This makes it time-consuming and difficult to encompass all tasks and conditions during training. In this paper, we propose a discriminative transfer learning method that incorporates formal proximal optimization and discriminative learning for general image restoration. The method requires a single-pass discriminative training and allows for reuse across various problems and conditions while achieving an efficiency comparable to previous discriminative approaches. Furthermore, after being trained, our model can be easily transferred to new likelihood terms to solve untrained tasks, or be combined with existing priors to further improve image restoration quality." @default.
- W3104154098 created "2020-11-23" @default.
- W3104154098 creator A5016930800 @default.
- W3104154098 creator A5059313827 @default.
- W3104154098 creator A5060969271 @default.
- W3104154098 creator A5067089721 @default.
- W3104154098 creator A5073712698 @default.
- W3104154098 date "2018-08-01" @default.
- W3104154098 modified "2023-10-03" @default.
- W3104154098 title "Discriminative Transfer Learning for General Image Restoration" @default.
- W3104154098 cites W1840913791 @default.
- W3104154098 cites W1915360731 @default.
- W3104154098 cites W1946953458 @default.
- W3104154098 cites W1964394948 @default.
- W3104154098 cites W1973207880 @default.
- W3104154098 cites W1978749115 @default.
- W3104154098 cites W1987075379 @default.
- W3104154098 cites W1992201949 @default.
- W3104154098 cites W1996726072 @default.
- W3104154098 cites W1998419211 @default.
- W3104154098 cites W2006262236 @default.
- W3104154098 cites W2018990310 @default.
- W3104154098 cites W2021347102 @default.
- W3104154098 cites W2023594478 @default.
- W3104154098 cites W2036682493 @default.
- W3104154098 cites W2037642501 @default.
- W3104154098 cites W2045737896 @default.
- W3104154098 cites W2048695508 @default.
- W3104154098 cites W2051834767 @default.
- W3104154098 cites W2056370875 @default.
- W3104154098 cites W2057480797 @default.
- W3104154098 cites W2092663520 @default.
- W3104154098 cites W2099244020 @default.
- W3104154098 cites W2099628070 @default.
- W3104154098 cites W2103559027 @default.
- W3104154098 cites W2117259536 @default.
- W3104154098 cites W2119290843 @default.
- W3104154098 cites W2119667497 @default.
- W3104154098 cites W2130184048 @default.
- W3104154098 cites W2130975789 @default.
- W3104154098 cites W2136396015 @default.
- W3104154098 cites W2153663612 @default.
- W3104154098 cites W2172275395 @default.
- W3104154098 cites W2437754452 @default.
- W3104154098 cites W2512704900 @default.
- W3104154098 cites W2519597608 @default.
- W3104154098 cites W2520474966 @default.
- W3104154098 cites W2536599074 @default.
- W3104154098 cites W2556872594 @default.
- W3104154098 cites W3105425607 @default.
- W3104154098 cites W4247043502 @default.
- W3104154098 cites W4250297470 @default.
- W3104154098 cites W4251637954 @default.
- W3104154098 cites W4292363360 @default.
- W3104154098 doi "https://doi.org/10.1109/tip.2018.2831925" @default.
- W3104154098 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29993740" @default.
- W3104154098 hasPublicationYear "2018" @default.
- W3104154098 type Work @default.
- W3104154098 sameAs 3104154098 @default.
- W3104154098 citedByCount "12" @default.
- W3104154098 countsByYear W31041540982019 @default.
- W3104154098 countsByYear W31041540982020 @default.
- W3104154098 countsByYear W31041540982021 @default.
- W3104154098 countsByYear W31041540982022 @default.
- W3104154098 countsByYear W31041540982023 @default.
- W3104154098 crossrefType "journal-article" @default.
- W3104154098 hasAuthorship W3104154098A5016930800 @default.
- W3104154098 hasAuthorship W3104154098A5059313827 @default.
- W3104154098 hasAuthorship W3104154098A5060969271 @default.
- W3104154098 hasAuthorship W3104154098A5067089721 @default.
- W3104154098 hasAuthorship W3104154098A5073712698 @default.
- W3104154098 hasBestOaLocation W31041540981 @default.
- W3104154098 hasConcept C106430172 @default.
- W3104154098 hasConcept C115961682 @default.
- W3104154098 hasConcept C119857082 @default.
- W3104154098 hasConcept C150899416 @default.
- W3104154098 hasConcept C153180895 @default.
- W3104154098 hasConcept C154945302 @default.
- W3104154098 hasConcept C163294075 @default.
- W3104154098 hasConcept C2777693668 @default.
- W3104154098 hasConcept C31972630 @default.
- W3104154098 hasConcept C41008148 @default.
- W3104154098 hasConcept C55020928 @default.
- W3104154098 hasConcept C9417928 @default.
- W3104154098 hasConcept C97931131 @default.
- W3104154098 hasConcept C99498987 @default.
- W3104154098 hasConceptScore W3104154098C106430172 @default.
- W3104154098 hasConceptScore W3104154098C115961682 @default.
- W3104154098 hasConceptScore W3104154098C119857082 @default.
- W3104154098 hasConceptScore W3104154098C150899416 @default.
- W3104154098 hasConceptScore W3104154098C153180895 @default.
- W3104154098 hasConceptScore W3104154098C154945302 @default.
- W3104154098 hasConceptScore W3104154098C163294075 @default.
- W3104154098 hasConceptScore W3104154098C2777693668 @default.
- W3104154098 hasConceptScore W3104154098C31972630 @default.
- W3104154098 hasConceptScore W3104154098C41008148 @default.
- W3104154098 hasConceptScore W3104154098C55020928 @default.
- W3104154098 hasConceptScore W3104154098C9417928 @default.