Matches in SemOpenAlex for { <https://semopenalex.org/work/W3104156511> ?p ?o ?g. }
- W3104156511 abstract "Abstract Background We evaluated the benefits and risks of using the Abstrackr machine learning (ML) tool to semi-automate title-abstract screening and explored whether Abstrackr’s predictions varied by review or study-level characteristics. Methods For a convenience sample of 16 reviews for which adequate data were available to address our objectives (11 systematic reviews and 5 rapid reviews), we screened a 200-record training set in Abstrackr and downloaded the relevance (relevant or irrelevant) of the remaining records, as predicted by the tool. We retrospectively simulated the liberal-accelerated screening approach. We estimated the time savings and proportion missed compared with dual independent screening. For reviews with pairwise meta-analyses, we evaluated changes to the pooled effects after removing the missed studies. We explored whether the tool’s predictions varied by review and study-level characteristics. Results Using the ML-assisted liberal-accelerated approach, we wrongly excluded 0 to 3 (0 to 14%) records that were included in the final reports, but saved a median (IQR) 26 (9, 42) h of screening time. One missed study was included in eight pairwise meta-analyses in one systematic review. The pooled effect for just one of those meta-analyses changed considerably (from MD (95% CI) − 1.53 (− 2.92, − 0.15) to − 1.17 (− 2.70, 0.36)). Of 802 records in the final reports, 87% were correctly predicted as relevant. The correctness of the predictions did not differ by review (systematic or rapid, P = 0.37) or intervention type (simple or complex, P = 0.47). The predictions were more often correct in reviews with multiple (89%) vs. single (83%) research questions ( P = 0.01), or that included only trials (95%) vs. multiple designs (86%) ( P = 0.003). At the study level, trials (91%), mixed methods (100%), and qualitative (93%) studies were more often correctly predicted as relevant compared with observational studies (79%) or reviews (83%) ( P = 0.0006). Studies at high or unclear (88%) vs. low risk of bias (80%) ( P = 0.039), and those published more recently (mean (SD) 2008 (7) vs. 2006 (10), P = 0.02) were more often correctly predicted as relevant. Conclusion Our screening approach saved time and may be suitable in conditions where the limited risk of missing relevant records is acceptable. Several of our findings are paradoxical and require further study to fully understand the tasks to which ML-assisted screening is best suited. The findings should be interpreted in light of the fact that the protocol was prepared for the funder, but not published a priori. Because we used a convenience sample, the findings may be prone to selection bias. The results may not be generalizable to other samples of reviews, ML tools, or screening approaches. The small number of missed studies across reviews with pairwise meta-analyses hindered strong conclusions about the effect of missed studies on the results and conclusions of systematic reviews." @default.
- W3104156511 created "2020-11-23" @default.
- W3104156511 creator A5007539248 @default.
- W3104156511 creator A5010229710 @default.
- W3104156511 creator A5050661476 @default.
- W3104156511 creator A5065476871 @default.
- W3104156511 creator A5074723096 @default.
- W3104156511 creator A5080855331 @default.
- W3104156511 creator A5090378266 @default.
- W3104156511 creator A5090561309 @default.
- W3104156511 date "2020-11-27" @default.
- W3104156511 modified "2023-10-01" @default.
- W3104156511 title "Decoding semi-automated title-abstract screening: findings from a convenience sample of reviews" @default.
- W3104156511 cites W1629765770 @default.
- W3104156511 cites W1911361640 @default.
- W3104156511 cites W1997248429 @default.
- W3104156511 cites W2032191478 @default.
- W3104156511 cites W2043566294 @default.
- W3104156511 cites W2075950485 @default.
- W3104156511 cites W2095601341 @default.
- W3104156511 cites W2095623039 @default.
- W3104156511 cites W2100053037 @default.
- W3104156511 cites W2146668368 @default.
- W3104156511 cites W2156100542 @default.
- W3104156511 cites W2161374186 @default.
- W3104156511 cites W2180291732 @default.
- W3104156511 cites W2396846174 @default.
- W3104156511 cites W2560438049 @default.
- W3104156511 cites W2593758073 @default.
- W3104156511 cites W2604351697 @default.
- W3104156511 cites W2604568423 @default.
- W3104156511 cites W2625299527 @default.
- W3104156511 cites W2756578555 @default.
- W3104156511 cites W2783690099 @default.
- W3104156511 cites W2805303998 @default.
- W3104156511 cites W2807522649 @default.
- W3104156511 cites W2808847453 @default.
- W3104156511 cites W2810434445 @default.
- W3104156511 cites W2953029151 @default.
- W3104156511 cites W2961191798 @default.
- W3104156511 cites W2982683456 @default.
- W3104156511 cites W2987303508 @default.
- W3104156511 cites W3003735349 @default.
- W3104156511 cites W3005919160 @default.
- W3104156511 cites W3029811621 @default.
- W3104156511 cites W3093173351 @default.
- W3104156511 cites W4294116629 @default.
- W3104156511 cites W4313371821 @default.
- W3104156511 doi "https://doi.org/10.1186/s13643-020-01528-x" @default.
- W3104156511 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7694314" @default.
- W3104156511 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33243276" @default.
- W3104156511 hasPublicationYear "2020" @default.
- W3104156511 type Work @default.
- W3104156511 sameAs 3104156511 @default.
- W3104156511 citedByCount "11" @default.
- W3104156511 countsByYear W31041565112021 @default.
- W3104156511 countsByYear W31041565112022 @default.
- W3104156511 countsByYear W31041565112023 @default.
- W3104156511 crossrefType "journal-article" @default.
- W3104156511 hasAuthorship W3104156511A5007539248 @default.
- W3104156511 hasAuthorship W3104156511A5010229710 @default.
- W3104156511 hasAuthorship W3104156511A5050661476 @default.
- W3104156511 hasAuthorship W3104156511A5065476871 @default.
- W3104156511 hasAuthorship W3104156511A5074723096 @default.
- W3104156511 hasAuthorship W3104156511A5080855331 @default.
- W3104156511 hasAuthorship W3104156511A5090378266 @default.
- W3104156511 hasAuthorship W3104156511A5090561309 @default.
- W3104156511 hasBestOaLocation W31041565111 @default.
- W3104156511 hasConcept C105795698 @default.
- W3104156511 hasConcept C124101348 @default.
- W3104156511 hasConcept C126322002 @default.
- W3104156511 hasConcept C129848803 @default.
- W3104156511 hasConcept C154945302 @default.
- W3104156511 hasConcept C177264268 @default.
- W3104156511 hasConcept C17744445 @default.
- W3104156511 hasConcept C184898388 @default.
- W3104156511 hasConcept C185592680 @default.
- W3104156511 hasConcept C189708586 @default.
- W3104156511 hasConcept C198531522 @default.
- W3104156511 hasConcept C199360897 @default.
- W3104156511 hasConcept C199539241 @default.
- W3104156511 hasConcept C2779473830 @default.
- W3104156511 hasConcept C33923547 @default.
- W3104156511 hasConcept C41008148 @default.
- W3104156511 hasConcept C43617362 @default.
- W3104156511 hasConcept C71924100 @default.
- W3104156511 hasConcept C95190672 @default.
- W3104156511 hasConceptScore W3104156511C105795698 @default.
- W3104156511 hasConceptScore W3104156511C124101348 @default.
- W3104156511 hasConceptScore W3104156511C126322002 @default.
- W3104156511 hasConceptScore W3104156511C129848803 @default.
- W3104156511 hasConceptScore W3104156511C154945302 @default.
- W3104156511 hasConceptScore W3104156511C177264268 @default.
- W3104156511 hasConceptScore W3104156511C17744445 @default.
- W3104156511 hasConceptScore W3104156511C184898388 @default.
- W3104156511 hasConceptScore W3104156511C185592680 @default.
- W3104156511 hasConceptScore W3104156511C189708586 @default.
- W3104156511 hasConceptScore W3104156511C198531522 @default.
- W3104156511 hasConceptScore W3104156511C199360897 @default.
- W3104156511 hasConceptScore W3104156511C199539241 @default.