Matches in SemOpenAlex for { <https://semopenalex.org/work/W3104184046> ?p ?o ?g. }
- W3104184046 endingPage "042" @default.
- W3104184046 startingPage "042" @default.
- W3104184046 abstract "Recent perturbative studies show that in 4d non-commutative spaces, the trivial (classically stable) vacuum of gauge theories becomes unstable at the quantum level, unless one introduces sufficiently many fermionic degrees of freedom. This is due to a negative IR-singular term in the one-loop effective potential, which appears as a result of the UV/IR mixing. We study such a system non-perturbatively in the case of pure U(1) gauge theory in four dimensions, where two directions are non-commutative. Monte Carlo simulations are performed after mapping the regularized theory onto a U(N) lattice gauge theory in d=2. At intermediate coupling strength, we find a phase in which open Wilson lines acquire non-zero vacuum expectation values, which implies the spontaneous breakdown of translational invariance. In this phase, various physical quantities obey clear scaling behaviors in the continuum limit with a fixed non-commutativity parameter $theta$, which provides evidence for a possible continuum theory. The extent of the dynamically generated space in the non-commutative directions becomes finite in the above limit, and its dependence on $theta$ is evaluated explicitly. We also study the dispersion relation. In the weak coupling symmetric phase, it involves a negative IR-singular term, which is responsible for the observed phase transition. In the broken phase, it reveals the existence of the Nambu-Goldstone mode associated with the spontaneous symmetry breaking." @default.
- W3104184046 created "2020-11-23" @default.
- W3104184046 creator A5057203076 @default.
- W3104184046 creator A5076385113 @default.
- W3104184046 creator A5085412804 @default.
- W3104184046 creator A5087236129 @default.
- W3104184046 date "2006-10-16" @default.
- W3104184046 modified "2023-10-14" @default.
- W3104184046 title "A non-perturbative study of 4d U(1) non-commutative gauge theory — the fate of one-loop instability" @default.
- W3104184046 cites W1514443266 @default.
- W3104184046 cites W1531882359 @default.
- W3104184046 cites W1605731573 @default.
- W3104184046 cites W1613576591 @default.
- W3104184046 cites W1640587145 @default.
- W3104184046 cites W1963807736 @default.
- W3104184046 cites W1966908380 @default.
- W3104184046 cites W1967470623 @default.
- W3104184046 cites W1968760972 @default.
- W3104184046 cites W1968764606 @default.
- W3104184046 cites W1970039290 @default.
- W3104184046 cites W1970850078 @default.
- W3104184046 cites W1973054261 @default.
- W3104184046 cites W1974309287 @default.
- W3104184046 cites W1974576514 @default.
- W3104184046 cites W1974681443 @default.
- W3104184046 cites W1977568414 @default.
- W3104184046 cites W1980415366 @default.
- W3104184046 cites W1986743982 @default.
- W3104184046 cites W1987815639 @default.
- W3104184046 cites W1989730283 @default.
- W3104184046 cites W1990812470 @default.
- W3104184046 cites W1990992809 @default.
- W3104184046 cites W1991232375 @default.
- W3104184046 cites W1993251750 @default.
- W3104184046 cites W1999987054 @default.
- W3104184046 cites W2001670695 @default.
- W3104184046 cites W2010610506 @default.
- W3104184046 cites W2013128625 @default.
- W3104184046 cites W2015548884 @default.
- W3104184046 cites W2015856082 @default.
- W3104184046 cites W2021561140 @default.
- W3104184046 cites W2024104876 @default.
- W3104184046 cites W2025693267 @default.
- W3104184046 cites W2025982065 @default.
- W3104184046 cites W2027629966 @default.
- W3104184046 cites W2028483785 @default.
- W3104184046 cites W2031232815 @default.
- W3104184046 cites W2031450309 @default.
- W3104184046 cites W2033054778 @default.
- W3104184046 cites W2034327039 @default.
- W3104184046 cites W2034594094 @default.
- W3104184046 cites W2036078632 @default.
- W3104184046 cites W2038929167 @default.
- W3104184046 cites W2039852524 @default.
- W3104184046 cites W2040843773 @default.
- W3104184046 cites W2041660672 @default.
- W3104184046 cites W2042082932 @default.
- W3104184046 cites W2042509339 @default.
- W3104184046 cites W2042842399 @default.
- W3104184046 cites W2043291992 @default.
- W3104184046 cites W2045845377 @default.
- W3104184046 cites W2047927050 @default.
- W3104184046 cites W2052558151 @default.
- W3104184046 cites W2059216142 @default.
- W3104184046 cites W2062057994 @default.
- W3104184046 cites W2065977918 @default.
- W3104184046 cites W2066104839 @default.
- W3104184046 cites W2066195998 @default.
- W3104184046 cites W2067442253 @default.
- W3104184046 cites W2073099708 @default.
- W3104184046 cites W2074417120 @default.
- W3104184046 cites W2081974578 @default.
- W3104184046 cites W2083174613 @default.
- W3104184046 cites W2086269593 @default.
- W3104184046 cites W2086632737 @default.
- W3104184046 cites W2088631062 @default.
- W3104184046 cites W2089604705 @default.
- W3104184046 cites W2089613297 @default.
- W3104184046 cites W2089909466 @default.
- W3104184046 cites W2090042971 @default.
- W3104184046 cites W2096971640 @default.
- W3104184046 cites W2097552733 @default.
- W3104184046 cites W2099580529 @default.
- W3104184046 cites W2102318313 @default.
- W3104184046 cites W2102966260 @default.
- W3104184046 cites W2113319086 @default.
- W3104184046 cites W2115726538 @default.
- W3104184046 cites W2117709364 @default.
- W3104184046 cites W2124590498 @default.
- W3104184046 cites W2134072802 @default.
- W3104184046 cites W2139563615 @default.
- W3104184046 cites W2140572013 @default.
- W3104184046 cites W2142595523 @default.
- W3104184046 cites W2143159160 @default.
- W3104184046 cites W2145023644 @default.
- W3104184046 cites W2146808728 @default.
- W3104184046 cites W2149456513 @default.
- W3104184046 cites W2149695961 @default.