Matches in SemOpenAlex for { <https://semopenalex.org/work/W3104218983> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W3104218983 abstract "Abstract Proper selection of the drilling parameters and dynamic behavior is a critical factor in improving drilling performance and efficiency. Real-time monitoring allows the driller to avoid detrimental drill string vibrations and maintain optimum drilling conditions through periodic adjustments of various dynamic control parameters (such as weight on bit, rotary speed, circulation rate). However, selection of the appropriate parameters is not a trivial task. A few iterations in parameter modification may be essential before the desired target rate of penetration (ROP) is obtained; however, the final result may not be optimal yet. Therefore, the development of an efficient artificial intelligence (AI) method to predict the appropriate control parameters is critical for drilling optimization. The AI approach presented in this paper uses the power of optimized Artificial Neural Networks (ANN) to model the behavior of the non-linear, multi- input/output drilling system. The optimization of the model was achieved by optimizing the controllers (combined Genetic Algorithm, GA and Pattern Search, PS) to reach the global optima, which also provides the drilling planning team with a quantified recommendation on the appropriate optimal drilling parameters. Development of the optimized ANN model used drilling parameters data which were recorded real-time from drilling practices in different lithological units. Representative portions of the data sets were utilized in training, testing and validation of the model. The results of the analysis has demonstrated the AI method to be a promising approach for simulation and prediction of the behavior of the complex multi-parameter drilling system. This method is a powerful alternative to traditional analytic or real-time manipulation of the drilling parameters for mitigation of drill string vibrations and invisible lost time. The utilization can be extended to the field of drilling control and optimization, which can lead to a great contribution of 73% in reduction of the drilling time. This work demonstrates the capability of the optimizing controller (combination of GA and PS) to improve the efficiency and accuracy of the conventional ANN for drilling optimization." @default.
- W3104218983 created "2020-11-23" @default.
- W3104218983 creator A5000428018 @default.
- W3104218983 creator A5054597879 @default.
- W3104218983 creator A5069238807 @default.
- W3104218983 creator A5087991576 @default.
- W3104218983 date "2020-11-12" @default.
- W3104218983 modified "2023-09-26" @default.
- W3104218983 title "Optimization of Drilling Parameters using an Innovative GA-PS Artificial Intelligence Model" @default.
- W3104218983 cites W1486391009 @default.
- W3104218983 cites W1581066146 @default.
- W3104218983 cites W1985716061 @default.
- W3104218983 cites W2025888605 @default.
- W3104218983 cites W2066096043 @default.
- W3104218983 cites W2096531629 @default.
- W3104218983 cites W2116982362 @default.
- W3104218983 cites W2137669384 @default.
- W3104218983 cites W3023540311 @default.
- W3104218983 doi "https://doi.org/10.2118/202325-ms" @default.
- W3104218983 hasPublicationYear "2020" @default.
- W3104218983 type Work @default.
- W3104218983 sameAs 3104218983 @default.
- W3104218983 citedByCount "4" @default.
- W3104218983 countsByYear W31042189832021 @default.
- W3104218983 countsByYear W31042189832023 @default.
- W3104218983 crossrefType "proceedings-article" @default.
- W3104218983 hasAuthorship W3104218983A5000428018 @default.
- W3104218983 hasAuthorship W3104218983A5054597879 @default.
- W3104218983 hasAuthorship W3104218983A5069238807 @default.
- W3104218983 hasAuthorship W3104218983A5087991576 @default.
- W3104218983 hasConcept C119857082 @default.
- W3104218983 hasConcept C127413603 @default.
- W3104218983 hasConcept C152068911 @default.
- W3104218983 hasConcept C154945302 @default.
- W3104218983 hasConcept C25197100 @default.
- W3104218983 hasConcept C2776497017 @default.
- W3104218983 hasConcept C2778382975 @default.
- W3104218983 hasConcept C2779402677 @default.
- W3104218983 hasConcept C41008148 @default.
- W3104218983 hasConcept C50644808 @default.
- W3104218983 hasConcept C78519656 @default.
- W3104218983 hasConcept C8880873 @default.
- W3104218983 hasConceptScore W3104218983C119857082 @default.
- W3104218983 hasConceptScore W3104218983C127413603 @default.
- W3104218983 hasConceptScore W3104218983C152068911 @default.
- W3104218983 hasConceptScore W3104218983C154945302 @default.
- W3104218983 hasConceptScore W3104218983C25197100 @default.
- W3104218983 hasConceptScore W3104218983C2776497017 @default.
- W3104218983 hasConceptScore W3104218983C2778382975 @default.
- W3104218983 hasConceptScore W3104218983C2779402677 @default.
- W3104218983 hasConceptScore W3104218983C41008148 @default.
- W3104218983 hasConceptScore W3104218983C50644808 @default.
- W3104218983 hasConceptScore W3104218983C78519656 @default.
- W3104218983 hasConceptScore W3104218983C8880873 @default.
- W3104218983 hasLocation W31042189831 @default.
- W3104218983 hasOpenAccess W3104218983 @default.
- W3104218983 hasPrimaryLocation W31042189831 @default.
- W3104218983 hasRelatedWork W10793771 @default.
- W3104218983 hasRelatedWork W11531451 @default.
- W3104218983 hasRelatedWork W1679810 @default.
- W3104218983 hasRelatedWork W3060714 @default.
- W3104218983 hasRelatedWork W4748126 @default.
- W3104218983 hasRelatedWork W5773617 @default.
- W3104218983 hasRelatedWork W7197678 @default.
- W3104218983 hasRelatedWork W770098 @default.
- W3104218983 hasRelatedWork W9584637 @default.
- W3104218983 hasRelatedWork W9783904 @default.
- W3104218983 isParatext "false" @default.
- W3104218983 isRetracted "false" @default.
- W3104218983 magId "3104218983" @default.
- W3104218983 workType "article" @default.