Matches in SemOpenAlex for { <https://semopenalex.org/work/W3104332386> ?p ?o ?g. }
- W3104332386 endingPage "028" @default.
- W3104332386 startingPage "028" @default.
- W3104332386 abstract "We present a method to reconstruct the initial conditions of the universe using observed galaxy positions and luminosities under the assumption that the luminosities can be calibrated with weak lensing to give the mean halo mass. Our method relies on following the gradients of forward model and since the standard way to identify halos is non-differentiable and results in a discrete sample of objects, we propose a framework to model the halo position and mass field starting from the non-linear matter field using Neural Networks (NN), which are differentiable, yet can produce very pointlike maps. We evaluate the performance of our model with multiple metrics and find that our model is more than 95% correlated with the halo-mass fields up to k∼ 0.7 h/Mpc, and significantly reduces the stochasticity over the Poisson shot noise. We develop a data likelihood model that takes our modeling error and intrinsic scatter in the halo mass-light relation into account and show that a displaced log-normal model is a good approximation to it. We optimize over the corresponding loss function to reconstruct the initial density field of the dark matter starting from the halo mass field. To speed up and improve the convergence, we develop an annealing procedure for several parameters in the loss function, such as smoothing the likelihood starting with large smoothing and gradually decreasing it. We apply the method to halo number densities of = 2.5× 10−4 − 10−3(h/Mpc)3, typical of current and future redshift surveys, and recover a Gaussian initial density field, mapping all the higher order information in the data into the power spectrum of the linear reconstructed field. We show that our reconstruction improves over the standard reconstruction. For baryonic acoustic oscillations (BAO) the gains are relatively modest because BAO is dominated by large scales where standard reconstruction suffices. We improve upon it by ∼ 15–20% in terms of error on BAO peak as estimated by Fisher analysis at z=0. We expect larger gains will be achieved when applying this method to the broadband linear power spectrum reconstruction on smaller scales." @default.
- W3104332386 created "2020-11-23" @default.
- W3104332386 creator A5071856444 @default.
- W3104332386 creator A5075702962 @default.
- W3104332386 creator A5087071619 @default.
- W3104332386 date "2018-10-17" @default.
- W3104332386 modified "2023-10-06" @default.
- W3104332386 title "Cosmological reconstruction from galaxy light: neural network based light-matter connection" @default.
- W3104332386 cites W1916183061 @default.
- W3104332386 cites W1973368884 @default.
- W3104332386 cites W1982533357 @default.
- W3104332386 cites W2003182532 @default.
- W3104332386 cites W2003661692 @default.
- W3104332386 cites W2022574117 @default.
- W3104332386 cites W2023068686 @default.
- W3104332386 cites W2040218818 @default.
- W3104332386 cites W2067661752 @default.
- W3104332386 cites W2069557863 @default.
- W3104332386 cites W2089311248 @default.
- W3104332386 cites W2113391777 @default.
- W3104332386 cites W2118978333 @default.
- W3104332386 cites W2134712793 @default.
- W3104332386 cites W2147981121 @default.
- W3104332386 cites W2151103935 @default.
- W3104332386 cites W2162290847 @default.
- W3104332386 cites W2258945625 @default.
- W3104332386 cites W2291841595 @default.
- W3104332386 cites W2560178754 @default.
- W3104332386 cites W2604506260 @default.
- W3104332386 cites W2609038899 @default.
- W3104332386 cites W2612406039 @default.
- W3104332386 cites W2963146809 @default.
- W3104332386 cites W2963374686 @default.
- W3104332386 cites W3037108777 @default.
- W3104332386 cites W3098633546 @default.
- W3104332386 cites W3099938417 @default.
- W3104332386 cites W3099985710 @default.
- W3104332386 cites W3103093820 @default.
- W3104332386 cites W3103880752 @default.
- W3104332386 cites W3106072945 @default.
- W3104332386 doi "https://doi.org/10.1088/1475-7516/2018/10/028" @default.
- W3104332386 hasPublicationYear "2018" @default.
- W3104332386 type Work @default.
- W3104332386 sameAs 3104332386 @default.
- W3104332386 citedByCount "55" @default.
- W3104332386 countsByYear W31043323862018 @default.
- W3104332386 countsByYear W31043323862019 @default.
- W3104332386 countsByYear W31043323862020 @default.
- W3104332386 countsByYear W31043323862021 @default.
- W3104332386 countsByYear W31043323862022 @default.
- W3104332386 countsByYear W31043323862023 @default.
- W3104332386 crossrefType "journal-article" @default.
- W3104332386 hasAuthorship W3104332386A5071856444 @default.
- W3104332386 hasAuthorship W3104332386A5075702962 @default.
- W3104332386 hasAuthorship W3104332386A5087071619 @default.
- W3104332386 hasBestOaLocation W31043323862 @default.
- W3104332386 hasConcept C105795698 @default.
- W3104332386 hasConcept C121332964 @default.
- W3104332386 hasConcept C121864883 @default.
- W3104332386 hasConcept C159249277 @default.
- W3104332386 hasConcept C184665706 @default.
- W3104332386 hasConcept C26405456 @default.
- W3104332386 hasConcept C33024259 @default.
- W3104332386 hasConcept C33923547 @default.
- W3104332386 hasConcept C3770464 @default.
- W3104332386 hasConcept C44870925 @default.
- W3104332386 hasConcept C98444146 @default.
- W3104332386 hasConceptScore W3104332386C105795698 @default.
- W3104332386 hasConceptScore W3104332386C121332964 @default.
- W3104332386 hasConceptScore W3104332386C121864883 @default.
- W3104332386 hasConceptScore W3104332386C159249277 @default.
- W3104332386 hasConceptScore W3104332386C184665706 @default.
- W3104332386 hasConceptScore W3104332386C26405456 @default.
- W3104332386 hasConceptScore W3104332386C33024259 @default.
- W3104332386 hasConceptScore W3104332386C33923547 @default.
- W3104332386 hasConceptScore W3104332386C3770464 @default.
- W3104332386 hasConceptScore W3104332386C44870925 @default.
- W3104332386 hasConceptScore W3104332386C98444146 @default.
- W3104332386 hasIssue "10" @default.
- W3104332386 hasLocation W31043323861 @default.
- W3104332386 hasLocation W31043323862 @default.
- W3104332386 hasLocation W31043323863 @default.
- W3104332386 hasOpenAccess W3104332386 @default.
- W3104332386 hasPrimaryLocation W31043323861 @default.
- W3104332386 hasRelatedWork W125406123 @default.
- W3104332386 hasRelatedWork W1931331924 @default.
- W3104332386 hasRelatedWork W2084847985 @default.
- W3104332386 hasRelatedWork W2096865481 @default.
- W3104332386 hasRelatedWork W2243573433 @default.
- W3104332386 hasRelatedWork W2902534990 @default.
- W3104332386 hasRelatedWork W3105454402 @default.
- W3104332386 hasRelatedWork W4292509016 @default.
- W3104332386 hasRelatedWork W4311991179 @default.
- W3104332386 hasRelatedWork W4313591799 @default.
- W3104332386 hasVolume "2018" @default.
- W3104332386 isParatext "false" @default.
- W3104332386 isRetracted "false" @default.
- W3104332386 magId "3104332386" @default.