Matches in SemOpenAlex for { <https://semopenalex.org/work/W3104376871> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W3104376871 endingPage "547" @default.
- W3104376871 startingPage "517" @default.
- W3104376871 abstract "We provide some asymptotic theory for the largest eigenvalues of a sample covariance matrix of a p-dimensional time series where the dimension p = p_n converges to infinity when the sample size n increases. We give a short overview of the literature on the topic both in the light- and heavy-tailed cases when the data have finite (infinite) fourth moment, respectively. Our main focus is on the heavytailed case. In this case, one has a theory for the point process of the normalized eigenvalues of the sample covariance matrix in the iid case but also when rows and columns of the data are linearly dependent. We provide limit results for the weak convergence of these point processes to Poisson or cluster Poisson processes. Based on this convergence we can also derive the limit laws of various function als of the ordered eigenvalues such as the joint convergence of a finite number of the largest order statistics, the joint limit law of the largest eigenvalue and the trace, limit laws for successive ratios of ordered eigenvalues, etc. We also develop some limit theory for the singular values of the sample autocovariance matrices and their sums of squares. The theory is illustrated for simulated data and for the components of the S&P 500 stock index." @default.
- W3104376871 created "2020-11-23" @default.
- W3104376871 creator A5001383921 @default.
- W3104376871 creator A5015623766 @default.
- W3104376871 creator A5046178450 @default.
- W3104376871 creator A5050561905 @default.
- W3104376871 date "2016-04-19" @default.
- W3104376871 modified "2023-09-30" @default.
- W3104376871 title "Extreme value analysis for the sample autocovariance matrices of heavy-tailed multivariate time series" @default.
- W3104376871 cites W1489593603 @default.
- W3104376871 cites W1520752838 @default.
- W3104376871 cites W1586554030 @default.
- W3104376871 cites W1968062933 @default.
- W3104376871 cites W1976485684 @default.
- W3104376871 cites W1978806035 @default.
- W3104376871 cites W2005790663 @default.
- W3104376871 cites W2013800365 @default.
- W3104376871 cites W2014250529 @default.
- W3104376871 cites W2050170393 @default.
- W3104376871 cites W2083694956 @default.
- W3104376871 cites W2138431798 @default.
- W3104376871 cites W2154725178 @default.
- W3104376871 cites W2163997016 @default.
- W3104376871 cites W2165918462 @default.
- W3104376871 cites W2169413403 @default.
- W3104376871 cites W2179876825 @default.
- W3104376871 cites W2950126918 @default.
- W3104376871 cites W3101852015 @default.
- W3104376871 cites W4249703615 @default.
- W3104376871 cites W4292543836 @default.
- W3104376871 cites W4298248278 @default.
- W3104376871 cites W4362230038 @default.
- W3104376871 doi "https://doi.org/10.1007/s10687-016-0251-7" @default.
- W3104376871 hasPublicationYear "2016" @default.
- W3104376871 type Work @default.
- W3104376871 sameAs 3104376871 @default.
- W3104376871 citedByCount "27" @default.
- W3104376871 countsByYear W31043768712016 @default.
- W3104376871 countsByYear W31043768712017 @default.
- W3104376871 countsByYear W31043768712018 @default.
- W3104376871 countsByYear W31043768712019 @default.
- W3104376871 countsByYear W31043768712020 @default.
- W3104376871 countsByYear W31043768712021 @default.
- W3104376871 countsByYear W31043768712022 @default.
- W3104376871 countsByYear W31043768712023 @default.
- W3104376871 crossrefType "journal-article" @default.
- W3104376871 hasAuthorship W3104376871A5001383921 @default.
- W3104376871 hasAuthorship W3104376871A5015623766 @default.
- W3104376871 hasAuthorship W3104376871A5046178450 @default.
- W3104376871 hasAuthorship W3104376871A5050561905 @default.
- W3104376871 hasBestOaLocation W31043768712 @default.
- W3104376871 hasConcept C102519508 @default.
- W3104376871 hasConcept C105795698 @default.
- W3104376871 hasConcept C121332964 @default.
- W3104376871 hasConcept C134306372 @default.
- W3104376871 hasConcept C158693339 @default.
- W3104376871 hasConcept C185142706 @default.
- W3104376871 hasConcept C28826006 @default.
- W3104376871 hasConcept C33923547 @default.
- W3104376871 hasConcept C62520636 @default.
- W3104376871 hasConcept C64812099 @default.
- W3104376871 hasConcept C88271906 @default.
- W3104376871 hasConceptScore W3104376871C102519508 @default.
- W3104376871 hasConceptScore W3104376871C105795698 @default.
- W3104376871 hasConceptScore W3104376871C121332964 @default.
- W3104376871 hasConceptScore W3104376871C134306372 @default.
- W3104376871 hasConceptScore W3104376871C158693339 @default.
- W3104376871 hasConceptScore W3104376871C185142706 @default.
- W3104376871 hasConceptScore W3104376871C28826006 @default.
- W3104376871 hasConceptScore W3104376871C33923547 @default.
- W3104376871 hasConceptScore W3104376871C62520636 @default.
- W3104376871 hasConceptScore W3104376871C64812099 @default.
- W3104376871 hasConceptScore W3104376871C88271906 @default.
- W3104376871 hasIssue "3" @default.
- W3104376871 hasLocation W31043768711 @default.
- W3104376871 hasLocation W31043768712 @default.
- W3104376871 hasLocation W31043768713 @default.
- W3104376871 hasOpenAccess W3104376871 @default.
- W3104376871 hasPrimaryLocation W31043768711 @default.
- W3104376871 hasRelatedWork W1484942309 @default.
- W3104376871 hasRelatedWork W1579473819 @default.
- W3104376871 hasRelatedWork W1999051655 @default.
- W3104376871 hasRelatedWork W2031975314 @default.
- W3104376871 hasRelatedWork W2052982257 @default.
- W3104376871 hasRelatedWork W2552050053 @default.
- W3104376871 hasRelatedWork W3102111841 @default.
- W3104376871 hasRelatedWork W3106028093 @default.
- W3104376871 hasRelatedWork W4214489350 @default.
- W3104376871 hasRelatedWork W4221162891 @default.
- W3104376871 hasVolume "19" @default.
- W3104376871 isParatext "false" @default.
- W3104376871 isRetracted "false" @default.
- W3104376871 magId "3104376871" @default.
- W3104376871 workType "article" @default.