Matches in SemOpenAlex for { <https://semopenalex.org/work/W3104393478> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W3104393478 abstract "Data-driven predictive maintenance for the prediction of machine failure has been widely studied and performed to test machine failures. Predictive maintenance refers to the machine learning method, which utilizes data for identification of potential system malfunction and provides an alert when a system assessed to be prone to breakdown. The proposed work reveals a novel framework called Artificial Intelligence Monitoring 4.0 (AIM 4.0), which is capable of determining the current condition of equipment and provide a predicted mean time before failure occurs. AIM 4.0 utilizes three different ensemble machine learning methods, including Gradient Boost Machine (GBM), Light GBM, and XGBoost for prediction of machine failures. The machine learning methods stated are implemented to produce acceptable accuracy for the monitoring task as well as producing a prediction with a high confidence level." @default.
- W3104393478 created "2020-11-23" @default.
- W3104393478 creator A5011080351 @default.
- W3104393478 creator A5025957697 @default.
- W3104393478 creator A5028915945 @default.
- W3104393478 creator A5042993941 @default.
- W3104393478 creator A5077789570 @default.
- W3104393478 creator A5081879912 @default.
- W3104393478 date "2020-10-08" @default.
- W3104393478 modified "2023-10-06" @default.
- W3104393478 title "A Study on Gradient Boosting Algorithms for Development of AI Monitoring and Prediction Systems" @default.
- W3104393478 cites W2586297576 @default.
- W3104393478 cites W2766300505 @default.
- W3104393478 cites W2803281457 @default.
- W3104393478 cites W2889424024 @default.
- W3104393478 cites W2899642669 @default.
- W3104393478 cites W2936131980 @default.
- W3104393478 cites W2943931898 @default.
- W3104393478 cites W2949836779 @default.
- W3104393478 cites W2951083400 @default.
- W3104393478 cites W2952609086 @default.
- W3104393478 cites W2955161446 @default.
- W3104393478 cites W2968336449 @default.
- W3104393478 cites W2968704627 @default.
- W3104393478 cites W2972883610 @default.
- W3104393478 cites W2973032222 @default.
- W3104393478 cites W2973453577 @default.
- W3104393478 cites W2980576780 @default.
- W3104393478 cites W2980749699 @default.
- W3104393478 cites W2982488225 @default.
- W3104393478 cites W2986780979 @default.
- W3104393478 cites W2996904916 @default.
- W3104393478 cites W2998884377 @default.
- W3104393478 cites W2999883195 @default.
- W3104393478 cites W3001291798 @default.
- W3104393478 cites W3005455537 @default.
- W3104393478 cites W3006297925 @default.
- W3104393478 cites W3006597564 @default.
- W3104393478 doi "https://doi.org/10.1109/icci51257.2020.9247843" @default.
- W3104393478 hasPublicationYear "2020" @default.
- W3104393478 type Work @default.
- W3104393478 sameAs 3104393478 @default.
- W3104393478 citedByCount "11" @default.
- W3104393478 countsByYear W31043934782021 @default.
- W3104393478 countsByYear W31043934782022 @default.
- W3104393478 countsByYear W31043934782023 @default.
- W3104393478 crossrefType "proceedings-article" @default.
- W3104393478 hasAuthorship W3104393478A5011080351 @default.
- W3104393478 hasAuthorship W3104393478A5025957697 @default.
- W3104393478 hasAuthorship W3104393478A5028915945 @default.
- W3104393478 hasAuthorship W3104393478A5042993941 @default.
- W3104393478 hasAuthorship W3104393478A5077789570 @default.
- W3104393478 hasAuthorship W3104393478A5081879912 @default.
- W3104393478 hasConcept C11413529 @default.
- W3104393478 hasConcept C119857082 @default.
- W3104393478 hasConcept C153180895 @default.
- W3104393478 hasConcept C154945302 @default.
- W3104393478 hasConcept C169258074 @default.
- W3104393478 hasConcept C41008148 @default.
- W3104393478 hasConcept C46686674 @default.
- W3104393478 hasConcept C70153297 @default.
- W3104393478 hasConceptScore W3104393478C11413529 @default.
- W3104393478 hasConceptScore W3104393478C119857082 @default.
- W3104393478 hasConceptScore W3104393478C153180895 @default.
- W3104393478 hasConceptScore W3104393478C154945302 @default.
- W3104393478 hasConceptScore W3104393478C169258074 @default.
- W3104393478 hasConceptScore W3104393478C41008148 @default.
- W3104393478 hasConceptScore W3104393478C46686674 @default.
- W3104393478 hasConceptScore W3104393478C70153297 @default.
- W3104393478 hasLocation W31043934781 @default.
- W3104393478 hasOpenAccess W3104393478 @default.
- W3104393478 hasPrimaryLocation W31043934781 @default.
- W3104393478 hasRelatedWork W3151529617 @default.
- W3104393478 hasRelatedWork W3159988495 @default.
- W3104393478 hasRelatedWork W3200719183 @default.
- W3104393478 hasRelatedWork W4225307033 @default.
- W3104393478 hasRelatedWork W4288057626 @default.
- W3104393478 hasRelatedWork W4290989698 @default.
- W3104393478 hasRelatedWork W4292969247 @default.
- W3104393478 hasRelatedWork W4293069612 @default.
- W3104393478 hasRelatedWork W4304142064 @default.
- W3104393478 hasRelatedWork W4313488044 @default.
- W3104393478 isParatext "false" @default.
- W3104393478 isRetracted "false" @default.
- W3104393478 magId "3104393478" @default.
- W3104393478 workType "article" @default.