Matches in SemOpenAlex for { <https://semopenalex.org/work/W3104470564> ?p ?o ?g. }
- W3104470564 abstract "Modern MRI systems usually load the predesigned RFs and the accompanying gradients during clinical scans, with minimal adaption to the specific requirements of each scan. Here, we describe a neural network-based method for real-time design of excitation RF pulses and the accompanying gradients' waveforms to achieve spatially two-dimensional selectivity. Nine thousand sets of radio frequency (RF) and gradient waveforms with two-dimensional spatial selectivity were generated as the training dataset using the Shinnar-Le Roux (SLR) method. Neural networks were created and trained with five strategies (TS-1 to TS-5). The neural network-designed RF and gradients were compared with their SLR-designed counterparts and underwent Bloch simulation and phantom imaging to investigate their performances in spin manipulations. We demonstrate a convolutional neural network (TS-5) with multi-task learning to yield both the RF pulses and the accompanying two channels of gradient waveforms that comply with the SLR design, and these design results also provide excitation spatial profiles comparable with SLR pulses in both simulation (normalized root mean square error [NRMSE] of 0.0075 ± 0.0038 over the 400 sets of testing data between TS-5 and SLR) and phantom imaging. The output RF and gradient waveforms between the neural network and SLR methods were also compared, and the joint NRMSE, with both RF and the two channels of gradient waveforms considered, was 0.0098 ± 0.0024 between TS-5 and SLR. The RF and gradients were generated on a commercially available workstation, which took ~130 ms for TS-5. In conclusion, we present a convolutional neural network with multi-task learning, trained with SLR transformation pairs, that is capable of simultaneously generating RF and two channels of gradient waveforms, given the desired spatially two-dimensional excitation profiles." @default.
- W3104470564 created "2020-11-23" @default.
- W3104470564 creator A5000556666 @default.
- W3104470564 creator A5010465278 @default.
- W3104470564 creator A5028432411 @default.
- W3104470564 creator A5033462745 @default.
- W3104470564 creator A5038868077 @default.
- W3104470564 creator A5043613858 @default.
- W3104470564 creator A5047201089 @default.
- W3104470564 date "2020-11-16" @default.
- W3104470564 modified "2023-09-27" @default.
- W3104470564 title "Multi‐task convolutional neural network‐based design of radio frequency pulse and the accompanying gradients for magnetic resonance imaging" @default.
- W3104470564 cites W1434464482 @default.
- W3104470564 cites W1830912797 @default.
- W3104470564 cites W1911757194 @default.
- W3104470564 cites W1933150758 @default.
- W3104470564 cites W1973248267 @default.
- W3104470564 cites W1975962781 @default.
- W3104470564 cites W1981073954 @default.
- W3104470564 cites W1998730314 @default.
- W3104470564 cites W2023542643 @default.
- W3104470564 cites W2046810758 @default.
- W3104470564 cites W2047422361 @default.
- W3104470564 cites W2058213755 @default.
- W3104470564 cites W2058434979 @default.
- W3104470564 cites W2063222665 @default.
- W3104470564 cites W2065835252 @default.
- W3104470564 cites W2069314318 @default.
- W3104470564 cites W2078208347 @default.
- W3104470564 cites W2097117768 @default.
- W3104470564 cites W2129469182 @default.
- W3104470564 cites W2130145838 @default.
- W3104470564 cites W2149221817 @default.
- W3104470564 cites W2149956808 @default.
- W3104470564 cites W2157920880 @default.
- W3104470564 cites W2161044358 @default.
- W3104470564 cites W2162033035 @default.
- W3104470564 cites W2162324827 @default.
- W3104470564 cites W2239749729 @default.
- W3104470564 cites W2273215959 @default.
- W3104470564 cites W2287439199 @default.
- W3104470564 cites W2310992461 @default.
- W3104470564 cites W2343172899 @default.
- W3104470564 cites W2409310461 @default.
- W3104470564 cites W2411628851 @default.
- W3104470564 cites W2442117232 @default.
- W3104470564 cites W2470363611 @default.
- W3104470564 cites W2509967049 @default.
- W3104470564 cites W2516255829 @default.
- W3104470564 cites W2517687026 @default.
- W3104470564 cites W2522648674 @default.
- W3104470564 cites W2525606708 @default.
- W3104470564 cites W2593431520 @default.
- W3104470564 cites W2608743741 @default.
- W3104470564 cites W2729876886 @default.
- W3104470564 cites W2797072384 @default.
- W3104470564 cites W2896690543 @default.
- W3104470564 cites W2913340405 @default.
- W3104470564 cites W2935786458 @default.
- W3104470564 cites W2944735644 @default.
- W3104470564 cites W2962723798 @default.
- W3104470564 cites W3104087655 @default.
- W3104470564 cites W3104258355 @default.
- W3104470564 cites W1969065566 @default.
- W3104470564 cites W2019471375 @default.
- W3104470564 doi "https://doi.org/10.1002/nbm.4443" @default.
- W3104470564 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33200468" @default.
- W3104470564 hasPublicationYear "2020" @default.
- W3104470564 type Work @default.
- W3104470564 sameAs 3104470564 @default.
- W3104470564 citedByCount "3" @default.
- W3104470564 countsByYear W31044705642021 @default.
- W3104470564 countsByYear W31044705642023 @default.
- W3104470564 crossrefType "journal-article" @default.
- W3104470564 hasAuthorship W3104470564A5000556666 @default.
- W3104470564 hasAuthorship W3104470564A5010465278 @default.
- W3104470564 hasAuthorship W3104470564A5028432411 @default.
- W3104470564 hasAuthorship W3104470564A5033462745 @default.
- W3104470564 hasAuthorship W3104470564A5038868077 @default.
- W3104470564 hasAuthorship W3104470564A5043613858 @default.
- W3104470564 hasAuthorship W3104470564A5047201089 @default.
- W3104470564 hasConcept C121332964 @default.
- W3104470564 hasConcept C126838900 @default.
- W3104470564 hasConcept C139210041 @default.
- W3104470564 hasConcept C143409427 @default.
- W3104470564 hasConcept C154945302 @default.
- W3104470564 hasConcept C169760540 @default.
- W3104470564 hasConcept C184779094 @default.
- W3104470564 hasConcept C2779226451 @default.
- W3104470564 hasConcept C2780167933 @default.
- W3104470564 hasConcept C41008148 @default.
- W3104470564 hasConcept C46141821 @default.
- W3104470564 hasConcept C71924100 @default.
- W3104470564 hasConcept C74064498 @default.
- W3104470564 hasConcept C76155785 @default.
- W3104470564 hasConcept C81363708 @default.
- W3104470564 hasConcept C86803240 @default.
- W3104470564 hasConcept C94915269 @default.
- W3104470564 hasConceptScore W3104470564C121332964 @default.
- W3104470564 hasConceptScore W3104470564C126838900 @default.