Matches in SemOpenAlex for { <https://semopenalex.org/work/W3104497846> ?p ?o ?g. }
- W3104497846 endingPage "98" @default.
- W3104497846 startingPage "98" @default.
- W3104497846 abstract "Solar flares are explosions in the solar atmosphere that release intense bursts of short-wavelength radiation and are capable of producing severe space-weather consequences. Flares release free energy built up in coronal fields, which are rooted in active regions (ARs) on the photosphere, via magnetic reconnection. The exact processes that lead to reconnection are not fully known and therefore reliable forecasting of flares is challenging. Recently, photospheric magnetic-field data has been extensively analysed using machine learning (ML) and these studies suggest that flare-forecasting accuracy does not strongly depend on how long in advance flares are predicted (Bobra & Couvidat 2015; Raboonik et al. 2017; Huang et al. 2018). Here, we use ML to understand the evolution of AR magnetic fields before and after flares. We explicitly train convolutional neural networks (CNNs) to classify SDO/HMI line-of-sight magnetograms into ARs producing at least one M- or X-class flare or as nonflaring. We find that flaring ARs remain in flare-productive states -- marked by recall >60% with a peak of ~ 80% -- days before and after flares. We use occlusion maps and statistical analysis to show that the CNN pays attention to regions between the opposite polarities from ARs and the CNN output is dominantly decided by the total unsigned line-of-sight flux of ARs. Using synthetic bipole magnetograms, we find spurious dependencies of the CNN output on magnetogram dimensions for a given bipole size. Our results suggest that it is important to use CNN designs that eliminate such artifacts in CNN applications for processing magnetograms and, in general, solar image data." @default.
- W3104497846 created "2020-11-23" @default.
- W3104497846 creator A5027988083 @default.
- W3104497846 creator A5029199410 @default.
- W3104497846 creator A5071715217 @default.
- W3104497846 creator A5077211376 @default.
- W3104497846 date "2020-07-28" @default.
- W3104497846 modified "2023-10-15" @default.
- W3104497846 title "Supervised Convolutional Neural Networks for Classification of Flaring and Nonflaring Active Regions Using Line-of-sight Magnetograms" @default.
- W3104497846 cites W1849277567 @default.
- W3104497846 cites W1958898028 @default.
- W3104497846 cites W1966806579 @default.
- W3104497846 cites W1966973332 @default.
- W3104497846 cites W1975186314 @default.
- W3104497846 cites W1999016464 @default.
- W3104497846 cites W2010544740 @default.
- W3104497846 cites W2023534999 @default.
- W3104497846 cites W2029038480 @default.
- W3104497846 cites W2094483427 @default.
- W3104497846 cites W2111078819 @default.
- W3104497846 cites W2120549050 @default.
- W3104497846 cites W2122755404 @default.
- W3104497846 cites W2123002043 @default.
- W3104497846 cites W2124410915 @default.
- W3104497846 cites W2146967864 @default.
- W3104497846 cites W2165185058 @default.
- W3104497846 cites W2509145218 @default.
- W3104497846 cites W2530494164 @default.
- W3104497846 cites W2549449189 @default.
- W3104497846 cites W2591123938 @default.
- W3104497846 cites W2743247456 @default.
- W3104497846 cites W2745330750 @default.
- W3104497846 cites W2787894218 @default.
- W3104497846 cites W2793171700 @default.
- W3104497846 cites W2800761015 @default.
- W3104497846 cites W2919115771 @default.
- W3104497846 cites W2945857584 @default.
- W3104497846 cites W2985781222 @default.
- W3104497846 cites W3005640358 @default.
- W3104497846 cites W3008201674 @default.
- W3104497846 cites W3102780218 @default.
- W3104497846 cites W3106257012 @default.
- W3104497846 cites W3189446085 @default.
- W3104497846 doi "https://doi.org/10.3847/1538-4357/ab9c29" @default.
- W3104497846 hasPublicationYear "2020" @default.
- W3104497846 type Work @default.
- W3104497846 sameAs 3104497846 @default.
- W3104497846 citedByCount "16" @default.
- W3104497846 countsByYear W31044978462021 @default.
- W3104497846 countsByYear W31044978462022 @default.
- W3104497846 countsByYear W31044978462023 @default.
- W3104497846 crossrefType "journal-article" @default.
- W3104497846 hasAuthorship W3104497846A5027988083 @default.
- W3104497846 hasAuthorship W3104497846A5029199410 @default.
- W3104497846 hasAuthorship W3104497846A5071715217 @default.
- W3104497846 hasAuthorship W3104497846A5077211376 @default.
- W3104497846 hasBestOaLocation W31044978461 @default.
- W3104497846 hasConcept C108884401 @default.
- W3104497846 hasConcept C115260700 @default.
- W3104497846 hasConcept C121332964 @default.
- W3104497846 hasConcept C1276947 @default.
- W3104497846 hasConcept C151325931 @default.
- W3104497846 hasConcept C154945302 @default.
- W3104497846 hasConcept C157479481 @default.
- W3104497846 hasConcept C185001636 @default.
- W3104497846 hasConcept C198352243 @default.
- W3104497846 hasConcept C2524010 @default.
- W3104497846 hasConcept C2779471453 @default.
- W3104497846 hasConcept C2779588948 @default.
- W3104497846 hasConcept C33923547 @default.
- W3104497846 hasConcept C39368324 @default.
- W3104497846 hasConcept C41008148 @default.
- W3104497846 hasConcept C44870925 @default.
- W3104497846 hasConcept C4839761 @default.
- W3104497846 hasConcept C62520636 @default.
- W3104497846 hasConcept C81363708 @default.
- W3104497846 hasConceptScore W3104497846C108884401 @default.
- W3104497846 hasConceptScore W3104497846C115260700 @default.
- W3104497846 hasConceptScore W3104497846C121332964 @default.
- W3104497846 hasConceptScore W3104497846C1276947 @default.
- W3104497846 hasConceptScore W3104497846C151325931 @default.
- W3104497846 hasConceptScore W3104497846C154945302 @default.
- W3104497846 hasConceptScore W3104497846C157479481 @default.
- W3104497846 hasConceptScore W3104497846C185001636 @default.
- W3104497846 hasConceptScore W3104497846C198352243 @default.
- W3104497846 hasConceptScore W3104497846C2524010 @default.
- W3104497846 hasConceptScore W3104497846C2779471453 @default.
- W3104497846 hasConceptScore W3104497846C2779588948 @default.
- W3104497846 hasConceptScore W3104497846C33923547 @default.
- W3104497846 hasConceptScore W3104497846C39368324 @default.
- W3104497846 hasConceptScore W3104497846C41008148 @default.
- W3104497846 hasConceptScore W3104497846C44870925 @default.
- W3104497846 hasConceptScore W3104497846C4839761 @default.
- W3104497846 hasConceptScore W3104497846C62520636 @default.
- W3104497846 hasConceptScore W3104497846C81363708 @default.
- W3104497846 hasIssue "2" @default.
- W3104497846 hasLocation W31044978461 @default.
- W3104497846 hasLocation W31044978462 @default.