Matches in SemOpenAlex for { <https://semopenalex.org/work/W3104551718> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W3104551718 abstract "The Bayesian approach to modelling differs from the frequentist approach primarily in the supplementation of additional information about the parameters to the data. If we specify a “good” prior, in the sense that the prior nudges the likelihood in the right direction, then the estimates will also be good. This is what we aim to do in the case of variable selection problems, whereby the Bayesian method reduces the selection problem to one of estimation from a true search of the variable space for the model which optimises a certain criterion. We contribute to the vastly available literature of variable selection methods by using I-priors [5]—a class of Gaussian distributions which has the distinguishing property of having covariance proportional to the Fisher information (of the model parameters). The original motivation behind the I-prior methodology was to develop a novel unifying approach to various regression models. In this work, we detail the I-prior model used, and showcase some simulation results and several real-world applications in which the I-prior performs favourably compared to other prior distributions and/or variable selection techniques in terms of model size, (R^2), predictive ability, and so on." @default.
- W3104551718 created "2020-11-23" @default.
- W3104551718 creator A5044817945 @default.
- W3104551718 creator A5058560432 @default.
- W3104551718 date "2020-11-18" @default.
- W3104551718 modified "2023-09-27" @default.
- W3104551718 title "Bayesian Variable Selection for Linear Models Using I-Priors" @default.
- W3104551718 cites W1565176583 @default.
- W3104551718 cites W1603353793 @default.
- W3104551718 cites W1603903339 @default.
- W3104551718 cites W1666386643 @default.
- W3104551718 cites W1976365540 @default.
- W3104551718 cites W1979470650 @default.
- W3104551718 cites W1981295458 @default.
- W3104551718 cites W1982652137 @default.
- W3104551718 cites W2006681603 @default.
- W3104551718 cites W2016202972 @default.
- W3104551718 cites W2030748132 @default.
- W3104551718 cites W2049228615 @default.
- W3104551718 cites W2057331441 @default.
- W3104551718 cites W2060512257 @default.
- W3104551718 cites W2106675691 @default.
- W3104551718 cites W2114463818 @default.
- W3104551718 cites W2117135012 @default.
- W3104551718 cites W2119862467 @default.
- W3104551718 cites W2122825543 @default.
- W3104551718 cites W2158274052 @default.
- W3104551718 cites W2168175751 @default.
- W3104551718 cites W2477709421 @default.
- W3104551718 cites W2762763764 @default.
- W3104551718 cites W2788650779 @default.
- W3104551718 cites W2987039351 @default.
- W3104551718 cites W3102812845 @default.
- W3104551718 cites W3102998992 @default.
- W3104551718 cites W4239353198 @default.
- W3104551718 cites W4246048519 @default.
- W3104551718 cites W4246858143 @default.
- W3104551718 cites W4247655565 @default.
- W3104551718 cites W4253305902 @default.
- W3104551718 cites W4255455317 @default.
- W3104551718 cites W4255582690 @default.
- W3104551718 doi "https://doi.org/10.1007/978-981-15-8987-4_8" @default.
- W3104551718 hasPublicationYear "2020" @default.
- W3104551718 type Work @default.
- W3104551718 sameAs 3104551718 @default.
- W3104551718 citedByCount "0" @default.
- W3104551718 crossrefType "book-chapter" @default.
- W3104551718 hasAuthorship W3104551718A5044817945 @default.
- W3104551718 hasAuthorship W3104551718A5058560432 @default.
- W3104551718 hasConcept C105795698 @default.
- W3104551718 hasConcept C107673813 @default.
- W3104551718 hasConcept C119857082 @default.
- W3104551718 hasConcept C134306372 @default.
- W3104551718 hasConcept C148483581 @default.
- W3104551718 hasConcept C154945302 @default.
- W3104551718 hasConcept C160234255 @default.
- W3104551718 hasConcept C162376815 @default.
- W3104551718 hasConcept C177769412 @default.
- W3104551718 hasConcept C182365436 @default.
- W3104551718 hasConcept C33923547 @default.
- W3104551718 hasConcept C37903108 @default.
- W3104551718 hasConcept C41008148 @default.
- W3104551718 hasConcept C93959086 @default.
- W3104551718 hasConceptScore W3104551718C105795698 @default.
- W3104551718 hasConceptScore W3104551718C107673813 @default.
- W3104551718 hasConceptScore W3104551718C119857082 @default.
- W3104551718 hasConceptScore W3104551718C134306372 @default.
- W3104551718 hasConceptScore W3104551718C148483581 @default.
- W3104551718 hasConceptScore W3104551718C154945302 @default.
- W3104551718 hasConceptScore W3104551718C160234255 @default.
- W3104551718 hasConceptScore W3104551718C162376815 @default.
- W3104551718 hasConceptScore W3104551718C177769412 @default.
- W3104551718 hasConceptScore W3104551718C182365436 @default.
- W3104551718 hasConceptScore W3104551718C33923547 @default.
- W3104551718 hasConceptScore W3104551718C37903108 @default.
- W3104551718 hasConceptScore W3104551718C41008148 @default.
- W3104551718 hasConceptScore W3104551718C93959086 @default.
- W3104551718 hasLocation W31045517181 @default.
- W3104551718 hasOpenAccess W3104551718 @default.
- W3104551718 hasPrimaryLocation W31045517181 @default.
- W3104551718 hasRelatedWork W10286061 @default.
- W3104551718 hasRelatedWork W10491538 @default.
- W3104551718 hasRelatedWork W10970137 @default.
- W3104551718 hasRelatedWork W12125165 @default.
- W3104551718 hasRelatedWork W3801212 @default.
- W3104551718 hasRelatedWork W3980598 @default.
- W3104551718 hasRelatedWork W3999907 @default.
- W3104551718 hasRelatedWork W4257727 @default.
- W3104551718 hasRelatedWork W4796181 @default.
- W3104551718 hasRelatedWork W8303642 @default.
- W3104551718 isParatext "false" @default.
- W3104551718 isRetracted "false" @default.
- W3104551718 magId "3104551718" @default.
- W3104551718 workType "book-chapter" @default.