Matches in SemOpenAlex for { <https://semopenalex.org/work/W3104561293> ?p ?o ?g. }
- W3104561293 abstract "Artificial intelligence offers the potential to automate challenging data-processing tasks in collider physics. To establish its prospects, we explore to what extent deep learning with convolutional neural networks can discriminate quark and gluon jets better than observables designed by physicists. Our approach builds upon the paradigm that a jet can be treated as an image, with intensity given by the local calorimeter deposits. We supplement this construction by adding color to the images, with red, green and blue intensities given by the transverse momentum in charged particles, transverse momentum in neutral particles, and pixel-level charged particle counts. Overall, the deep networks match or outperform traditional jet variables. We also find that, while various simulations produce different quark and gluon jets, the neural networks are surprisingly insensitive to these differences, similar to traditional observables. This suggests that the networks can extract robust physical information from imperfect simulations." @default.
- W3104561293 created "2020-11-23" @default.
- W3104561293 creator A5020586743 @default.
- W3104561293 creator A5064689577 @default.
- W3104561293 creator A5072714716 @default.
- W3104561293 date "2017-01-01" @default.
- W3104561293 modified "2023-10-18" @default.
- W3104561293 title "Deep learning in color: towards automated quark/gluon jet discrimination" @default.
- W3104561293 cites W139921695 @default.
- W3104561293 cites W1548887676 @default.
- W3104561293 cites W1690836630 @default.
- W3104561293 cites W1907343197 @default.
- W3104561293 cites W2021788065 @default.
- W3104561293 cites W2044738244 @default.
- W3104561293 cites W2057126609 @default.
- W3104561293 cites W2060753133 @default.
- W3104561293 cites W2076063813 @default.
- W3104561293 cites W2097117768 @default.
- W3104561293 cites W2097584220 @default.
- W3104561293 cites W2109747070 @default.
- W3104561293 cites W2116232996 @default.
- W3104561293 cites W2123029412 @default.
- W3104561293 cites W2125102738 @default.
- W3104561293 cites W2125621954 @default.
- W3104561293 cites W2136749405 @default.
- W3104561293 cites W2137983211 @default.
- W3104561293 cites W2147446818 @default.
- W3104561293 cites W2148506570 @default.
- W3104561293 cites W2155113454 @default.
- W3104561293 cites W2269829830 @default.
- W3104561293 cites W2496392967 @default.
- W3104561293 cites W3098163999 @default.
- W3104561293 cites W3100074837 @default.
- W3104561293 cites W3100634322 @default.
- W3104561293 cites W3103114583 @default.
- W3104561293 cites W3104023534 @default.
- W3104561293 cites W3104674222 @default.
- W3104561293 cites W3105497058 @default.
- W3104561293 cites W3105992562 @default.
- W3104561293 cites W3121614399 @default.
- W3104561293 cites W3122543598 @default.
- W3104561293 doi "https://doi.org/10.1007/jhep01(2017)110" @default.
- W3104561293 hasPublicationYear "2017" @default.
- W3104561293 type Work @default.
- W3104561293 sameAs 3104561293 @default.
- W3104561293 citedByCount "185" @default.
- W3104561293 countsByYear W31045612932017 @default.
- W3104561293 countsByYear W31045612932018 @default.
- W3104561293 countsByYear W31045612932019 @default.
- W3104561293 countsByYear W31045612932020 @default.
- W3104561293 countsByYear W31045612932021 @default.
- W3104561293 countsByYear W31045612932022 @default.
- W3104561293 countsByYear W31045612932023 @default.
- W3104561293 crossrefType "journal-article" @default.
- W3104561293 hasAuthorship W3104561293A5020586743 @default.
- W3104561293 hasAuthorship W3104561293A5064689577 @default.
- W3104561293 hasAuthorship W3104561293A5072714716 @default.
- W3104561293 hasBestOaLocation W31045612931 @default.
- W3104561293 hasConcept C109214941 @default.
- W3104561293 hasConcept C119947313 @default.
- W3104561293 hasConcept C121332964 @default.
- W3104561293 hasConcept C123579102 @default.
- W3104561293 hasConcept C152290109 @default.
- W3104561293 hasConcept C154945302 @default.
- W3104561293 hasConcept C185544564 @default.
- W3104561293 hasConcept C32848918 @default.
- W3104561293 hasConcept C41008148 @default.
- W3104561293 hasConcept C62520636 @default.
- W3104561293 hasConcept C7602139 @default.
- W3104561293 hasConcept C81363708 @default.
- W3104561293 hasConcept C97355855 @default.
- W3104561293 hasConceptScore W3104561293C109214941 @default.
- W3104561293 hasConceptScore W3104561293C119947313 @default.
- W3104561293 hasConceptScore W3104561293C121332964 @default.
- W3104561293 hasConceptScore W3104561293C123579102 @default.
- W3104561293 hasConceptScore W3104561293C152290109 @default.
- W3104561293 hasConceptScore W3104561293C154945302 @default.
- W3104561293 hasConceptScore W3104561293C185544564 @default.
- W3104561293 hasConceptScore W3104561293C32848918 @default.
- W3104561293 hasConceptScore W3104561293C41008148 @default.
- W3104561293 hasConceptScore W3104561293C62520636 @default.
- W3104561293 hasConceptScore W3104561293C7602139 @default.
- W3104561293 hasConceptScore W3104561293C81363708 @default.
- W3104561293 hasConceptScore W3104561293C97355855 @default.
- W3104561293 hasIssue "1" @default.
- W3104561293 hasLocation W31045612931 @default.
- W3104561293 hasLocation W31045612932 @default.
- W3104561293 hasLocation W31045612933 @default.
- W3104561293 hasLocation W31045612934 @default.
- W3104561293 hasOpenAccess W3104561293 @default.
- W3104561293 hasPrimaryLocation W31045612931 @default.
- W3104561293 hasRelatedWork W2044712713 @default.
- W3104561293 hasRelatedWork W2047047352 @default.
- W3104561293 hasRelatedWork W2051229745 @default.
- W3104561293 hasRelatedWork W2076589767 @default.
- W3104561293 hasRelatedWork W2125751202 @default.
- W3104561293 hasRelatedWork W2159163522 @default.
- W3104561293 hasRelatedWork W2163269341 @default.
- W3104561293 hasRelatedWork W2980313521 @default.
- W3104561293 hasRelatedWork W3000850749 @default.