Matches in SemOpenAlex for { <https://semopenalex.org/work/W3104596380> ?p ?o ?g. }
- W3104596380 abstract "Kernel methods augmented with random features give scalable algorithms for learning from big data. But it has been computationally hard to sample random features according to a probability distribution that is optimized for the data, so as to minimize the required number of features for achieving the learning to a desired accuracy. Here, we develop a quantum algorithm for sampling from this optimized distribution over features, in runtime $O(D)$ that is linear in the dimension $D$ of the input data. Our algorithm achieves an exponential speedup in $D$ compared to any known classical algorithm for this sampling task. In contrast to existing quantum machine learning algorithms, our algorithm circumvents sparsity and low-rank assumptions and thus has wide applicability. We also show that the sampled features can be combined with regression by stochastic gradient descent to achieve the learning without canceling out our exponential speedup. Our algorithm based on sampling optimized random features leads to an accelerated framework for machine learning that takes advantage of quantum computers." @default.
- W3104596380 created "2020-11-23" @default.
- W3104596380 creator A5007897552 @default.
- W3104596380 creator A5036537988 @default.
- W3104596380 creator A5070120466 @default.
- W3104596380 creator A5074452192 @default.
- W3104596380 date "2020-04-22" @default.
- W3104596380 modified "2023-10-03" @default.
- W3104596380 title "Learning with Optimized Random Features: Exponential Speedup by Quantum Machine Learning without Sparsity and Low-Rank Assumptions" @default.
- W3104596380 cites W1492999010 @default.
- W3104596380 cites W1506809288 @default.
- W3104596380 cites W1551209770 @default.
- W3104596380 cites W1560724230 @default.
- W3104596380 cites W175700287 @default.
- W3104596380 cites W1981783889 @default.
- W3104596380 cites W1988369744 @default.
- W3104596380 cites W2042127289 @default.
- W3104596380 cites W2047278710 @default.
- W3104596380 cites W2051446825 @default.
- W3104596380 cites W2094908058 @default.
- W3104596380 cites W2096334625 @default.
- W3104596380 cites W2103956991 @default.
- W3104596380 cites W2112545207 @default.
- W3104596380 cites W2123395972 @default.
- W3104596380 cites W2135479785 @default.
- W3104596380 cites W2137557016 @default.
- W3104596380 cites W2144902422 @default.
- W3104596380 cites W2145763471 @default.
- W3104596380 cites W2156190205 @default.
- W3104596380 cites W2159862444 @default.
- W3104596380 cites W2174510006 @default.
- W3104596380 cites W2185932763 @default.
- W3104596380 cites W2207520826 @default.
- W3104596380 cites W2266138411 @default.
- W3104596380 cites W2544176167 @default.
- W3104596380 cites W2549898883 @default.
- W3104596380 cites W2607911764 @default.
- W3104596380 cites W2616566795 @default.
- W3104596380 cites W2736592352 @default.
- W3104596380 cites W2761673598 @default.
- W3104596380 cites W2792315573 @default.
- W3104596380 cites W2798434869 @default.
- W3104596380 cites W2806997737 @default.
- W3104596380 cites W2884243924 @default.
- W3104596380 cites W2885310221 @default.
- W3104596380 cites W2891234027 @default.
- W3104596380 cites W2923233923 @default.
- W3104596380 cites W2923917339 @default.
- W3104596380 cites W2941010932 @default.
- W3104596380 cites W2953256123 @default.
- W3104596380 cites W2963013450 @default.
- W3104596380 cites W2963121444 @default.
- W3104596380 cites W2963459001 @default.
- W3104596380 cites W2963477567 @default.
- W3104596380 cites W2963709899 @default.
- W3104596380 cites W2963942108 @default.
- W3104596380 cites W2964039664 @default.
- W3104596380 cites W2965944281 @default.
- W3104596380 cites W2989144103 @default.
- W3104596380 cites W2997839189 @default.
- W3104596380 cites W3034336799 @default.
- W3104596380 cites W3081652313 @default.
- W3104596380 cites W3098784673 @default.
- W3104596380 cites W3101135395 @default.
- W3104596380 cites W3101479050 @default.
- W3104596380 cites W3104275312 @default.
- W3104596380 cites W3104433882 @default.
- W3104596380 cites W3104890289 @default.
- W3104596380 cites W3111297213 @default.
- W3104596380 cites W3153737196 @default.
- W3104596380 cites W32507011 @default.
- W3104596380 hasPublicationYear "2020" @default.
- W3104596380 type Work @default.
- W3104596380 sameAs 3104596380 @default.
- W3104596380 citedByCount "0" @default.
- W3104596380 crossrefType "posted-content" @default.
- W3104596380 hasAuthorship W3104596380A5007897552 @default.
- W3104596380 hasAuthorship W3104596380A5036537988 @default.
- W3104596380 hasAuthorship W3104596380A5070120466 @default.
- W3104596380 hasAuthorship W3104596380A5074452192 @default.
- W3104596380 hasBestOaLocation W31045963801 @default.
- W3104596380 hasConcept C106131492 @default.
- W3104596380 hasConcept C11413529 @default.
- W3104596380 hasConcept C114614502 @default.
- W3104596380 hasConcept C121332964 @default.
- W3104596380 hasConcept C137019171 @default.
- W3104596380 hasConcept C140779682 @default.
- W3104596380 hasConcept C154945302 @default.
- W3104596380 hasConcept C164226766 @default.
- W3104596380 hasConcept C173608175 @default.
- W3104596380 hasConcept C202444582 @default.
- W3104596380 hasConcept C206688291 @default.
- W3104596380 hasConcept C2779094486 @default.
- W3104596380 hasConcept C31972630 @default.
- W3104596380 hasConcept C33676613 @default.
- W3104596380 hasConcept C33923547 @default.
- W3104596380 hasConcept C41008148 @default.
- W3104596380 hasConcept C48044578 @default.
- W3104596380 hasConcept C50644808 @default.
- W3104596380 hasConcept C62520636 @default.