Matches in SemOpenAlex for { <https://semopenalex.org/work/W3104673453> ?p ?o ?g. }
- W3104673453 abstract "Machine learning techniques are widely applied in many modern optical sky surveys, e.q. Pan-STARRS1, PTF/iPTF and Subaru/Hyper Suprime-Cam survey, to reduce human intervention for data verification. In this study, we have established a machine learning based real-bogus system to reject the false detections in the Subaru/Hyper-Suprime-Cam StrategicSurvey Program (HSC-SSP) source catalog. Therefore the HSC-SSP moving object detection pipeline can operate more effectively due to the reduction of false positives. To train the real-bogus system, we use the stationary sources as the real training set and the flagged data as the bogus set. The training set contains 47 features, most of which are photometric measurements and shape moments generated from the HSC image reduction pipeline (hscPipe). Our system can reach a true positive rate (tpr) ~96% with a false positive rate (fpr) ~ 1% or tpr ~99% at fpr ~5%. Therefore we conclude that the stationary sources are decent real training samples, and using photometry measurements and shape moments can reject the false positives effectively." @default.
- W3104673453 created "2020-11-23" @default.
- W3104673453 creator A5003564169 @default.
- W3104673453 creator A5006998280 @default.
- W3104673453 creator A5007045771 @default.
- W3104673453 creator A5036912053 @default.
- W3104673453 creator A5037270418 @default.
- W3104673453 creator A5042174707 @default.
- W3104673453 creator A5058606486 @default.
- W3104673453 creator A5069028939 @default.
- W3104673453 date "2017-09-01" @default.
- W3104673453 modified "2023-10-16" @default.
- W3104673453 title "Machine-learning-based real–bogus system for the HSC-SSP moving object detection pipeline" @default.
- W3104673453 cites W1909588274 @default.
- W3104673453 cites W1916006773 @default.
- W3104673453 cites W1955749736 @default.
- W3104673453 cites W1976579441 @default.
- W3104673453 cites W2010779259 @default.
- W3104673453 cites W2021868478 @default.
- W3104673453 cites W2024305559 @default.
- W3104673453 cites W2045902942 @default.
- W3104673453 cites W2054447373 @default.
- W3104673453 cites W2074920411 @default.
- W3104673453 cites W2142238829 @default.
- W3104673453 cites W2156598558 @default.
- W3104673453 cites W2167287141 @default.
- W3104673453 cites W2292579160 @default.
- W3104673453 cites W2469994677 @default.
- W3104673453 cites W2475288983 @default.
- W3104673453 cites W2501418591 @default.
- W3104673453 cites W2519736747 @default.
- W3104673453 cites W2526445631 @default.
- W3104673453 cites W2532702805 @default.
- W3104673453 cites W2554959913 @default.
- W3104673453 cites W2556828452 @default.
- W3104673453 cites W2556925554 @default.
- W3104673453 cites W2560585187 @default.
- W3104673453 cites W2752313335 @default.
- W3104673453 cites W2911964244 @default.
- W3104673453 cites W3098294620 @default.
- W3104673453 cites W3099865183 @default.
- W3104673453 cites W3101237866 @default.
- W3104673453 cites W3101860507 @default.
- W3104673453 cites W3101896622 @default.
- W3104673453 cites W3103459672 @default.
- W3104673453 cites W3103496323 @default.
- W3104673453 cites W3106094130 @default.
- W3104673453 doi "https://doi.org/10.1093/pasj/psx082" @default.
- W3104673453 hasPublicationYear "2017" @default.
- W3104673453 type Work @default.
- W3104673453 sameAs 3104673453 @default.
- W3104673453 citedByCount "16" @default.
- W3104673453 countsByYear W31046734532017 @default.
- W3104673453 countsByYear W31046734532018 @default.
- W3104673453 countsByYear W31046734532019 @default.
- W3104673453 countsByYear W31046734532020 @default.
- W3104673453 countsByYear W31046734532021 @default.
- W3104673453 countsByYear W31046734532022 @default.
- W3104673453 countsByYear W31046734532023 @default.
- W3104673453 crossrefType "journal-article" @default.
- W3104673453 hasAuthorship W3104673453A5003564169 @default.
- W3104673453 hasAuthorship W3104673453A5006998280 @default.
- W3104673453 hasAuthorship W3104673453A5007045771 @default.
- W3104673453 hasAuthorship W3104673453A5036912053 @default.
- W3104673453 hasAuthorship W3104673453A5037270418 @default.
- W3104673453 hasAuthorship W3104673453A5042174707 @default.
- W3104673453 hasAuthorship W3104673453A5058606486 @default.
- W3104673453 hasAuthorship W3104673453A5069028939 @default.
- W3104673453 hasBestOaLocation W31046734531 @default.
- W3104673453 hasConcept C111919701 @default.
- W3104673453 hasConcept C112789634 @default.
- W3104673453 hasConcept C121332964 @default.
- W3104673453 hasConcept C150846664 @default.
- W3104673453 hasConcept C153180895 @default.
- W3104673453 hasConcept C154945302 @default.
- W3104673453 hasConcept C2776151529 @default.
- W3104673453 hasConcept C31972630 @default.
- W3104673453 hasConcept C41008148 @default.
- W3104673453 hasConcept C43521106 @default.
- W3104673453 hasConcept C44870925 @default.
- W3104673453 hasConcept C64869954 @default.
- W3104673453 hasConcept C68271606 @default.
- W3104673453 hasConcept C73329638 @default.
- W3104673453 hasConcept C95922358 @default.
- W3104673453 hasConceptScore W3104673453C111919701 @default.
- W3104673453 hasConceptScore W3104673453C112789634 @default.
- W3104673453 hasConceptScore W3104673453C121332964 @default.
- W3104673453 hasConceptScore W3104673453C150846664 @default.
- W3104673453 hasConceptScore W3104673453C153180895 @default.
- W3104673453 hasConceptScore W3104673453C154945302 @default.
- W3104673453 hasConceptScore W3104673453C2776151529 @default.
- W3104673453 hasConceptScore W3104673453C31972630 @default.
- W3104673453 hasConceptScore W3104673453C41008148 @default.
- W3104673453 hasConceptScore W3104673453C43521106 @default.
- W3104673453 hasConceptScore W3104673453C44870925 @default.
- W3104673453 hasConceptScore W3104673453C64869954 @default.
- W3104673453 hasConceptScore W3104673453C68271606 @default.
- W3104673453 hasConceptScore W3104673453C73329638 @default.
- W3104673453 hasConceptScore W3104673453C95922358 @default.
- W3104673453 hasIssue "SP1" @default.