Matches in SemOpenAlex for { <https://semopenalex.org/work/W3104738424> ?p ?o ?g. }
- W3104738424 endingPage "34" @default.
- W3104738424 startingPage "1" @default.
- W3104738424 abstract "Many feature subset selection (FSS) algorithms have been proposed, but not all of them are appropriate for a given feature selection problem. At the same time, so far there is rarely a good way to choose appropriate FSS algorithms for the problem at hand. Thus, FSS algorithm automatic recommendation is very important and practically useful. In this paper, a meta learning based FSS algorithm automatic recommendation method is presented. The proposed method first identifies the data sets that are most similar to the one at hand by the k-nearest neighbor classification algorithm, and the distances among these data sets are calculated based on the commonly-used data set characteristics. Then, it ranks all the candidate FSS algorithms according to their performance on these similar data sets, and chooses the algorithms with best performance as the appropriate ones. The performance of the candidate FSS algorithms is evaluated by a multi-criteria metric that takes into account not only the classification accuracy over the selected features, but also the runtime of feature selection and the number of selected features. The proposed recommendation method is extensively tested on 115 real world data sets with 22 well-known and frequently-used different FSS algorithms for five representative classifiers. The results show the effectiveness of our proposed FSS algorithm recommendation method." @default.
- W3104738424 created "2020-11-23" @default.
- W3104738424 creator A5014623594 @default.
- W3104738424 creator A5015122361 @default.
- W3104738424 creator A5019971162 @default.
- W3104738424 creator A5029290111 @default.
- W3104738424 creator A5031391841 @default.
- W3104738424 creator A5080042635 @default.
- W3104738424 date "2013-05-15" @default.
- W3104738424 modified "2023-10-16" @default.
- W3104738424 title "A Feature Subset Selection Algorithm Automatic Recommendation Method" @default.
- W3104738424 cites W116375701 @default.
- W3104738424 cites W1488960379 @default.
- W3104738424 cites W1493848307 @default.
- W3104738424 cites W1495061682 @default.
- W3104738424 cites W1500895378 @default.
- W3104738424 cites W1528113134 @default.
- W3104738424 cites W1555677953 @default.
- W3104738424 cites W1558866804 @default.
- W3104738424 cites W1565746575 @default.
- W3104738424 cites W1576808520 @default.
- W3104738424 cites W1583700199 @default.
- W3104738424 cites W162897784 @default.
- W3104738424 cites W1638732406 @default.
- W3104738424 cites W1639032689 @default.
- W3104738424 cites W1661871015 @default.
- W3104738424 cites W167115076 @default.
- W3104738424 cites W1680392829 @default.
- W3104738424 cites W1689445748 @default.
- W3104738424 cites W169484840 @default.
- W3104738424 cites W1731252636 @default.
- W3104738424 cites W1808644423 @default.
- W3104738424 cites W1817561967 @default.
- W3104738424 cites W187357405 @default.
- W3104738424 cites W1912123407 @default.
- W3104738424 cites W1974758710 @default.
- W3104738424 cites W1985995090 @default.
- W3104738424 cites W2010770252 @default.
- W3104738424 cites W2014915963 @default.
- W3104738424 cites W2017337590 @default.
- W3104738424 cites W2027698417 @default.
- W3104738424 cites W2036714085 @default.
- W3104738424 cites W2037322594 @default.
- W3104738424 cites W2089213632 @default.
- W3104738424 cites W2096081771 @default.
- W3104738424 cites W2102831150 @default.
- W3104738424 cites W2109293916 @default.
- W3104738424 cites W2116045745 @default.
- W3104738424 cites W2119387367 @default.
- W3104738424 cites W2119479037 @default.
- W3104738424 cites W2122379760 @default.
- W3104738424 cites W2125055259 @default.
- W3104738424 cites W2130949063 @default.
- W3104738424 cites W2131576956 @default.
- W3104738424 cites W2133462743 @default.
- W3104738424 cites W2133990480 @default.
- W3104738424 cites W2142334564 @default.
- W3104738424 cites W2145680191 @default.
- W3104738424 cites W2147169507 @default.
- W3104738424 cites W2149772057 @default.
- W3104738424 cites W2157686535 @default.
- W3104738424 cites W2157690157 @default.
- W3104738424 cites W2167467747 @default.
- W3104738424 cites W2169038408 @default.
- W3104738424 cites W2396427069 @default.
- W3104738424 cites W3023540311 @default.
- W3104738424 cites W43253981 @default.
- W3104738424 cites W69383807 @default.
- W3104738424 cites W78907429 @default.
- W3104738424 doi "https://doi.org/10.1613/jair.3831" @default.
- W3104738424 hasPublicationYear "2013" @default.
- W3104738424 type Work @default.
- W3104738424 sameAs 3104738424 @default.
- W3104738424 citedByCount "42" @default.
- W3104738424 countsByYear W31047384242015 @default.
- W3104738424 countsByYear W31047384242016 @default.
- W3104738424 countsByYear W31047384242017 @default.
- W3104738424 countsByYear W31047384242018 @default.
- W3104738424 countsByYear W31047384242019 @default.
- W3104738424 countsByYear W31047384242020 @default.
- W3104738424 countsByYear W31047384242021 @default.
- W3104738424 countsByYear W31047384242022 @default.
- W3104738424 countsByYear W31047384242023 @default.
- W3104738424 crossrefType "journal-article" @default.
- W3104738424 hasAuthorship W3104738424A5014623594 @default.
- W3104738424 hasAuthorship W3104738424A5015122361 @default.
- W3104738424 hasAuthorship W3104738424A5019971162 @default.
- W3104738424 hasAuthorship W3104738424A5029290111 @default.
- W3104738424 hasAuthorship W3104738424A5031391841 @default.
- W3104738424 hasAuthorship W3104738424A5080042635 @default.
- W3104738424 hasBestOaLocation W31047384241 @default.
- W3104738424 hasConcept C113238511 @default.
- W3104738424 hasConcept C11413529 @default.
- W3104738424 hasConcept C124101348 @default.
- W3104738424 hasConcept C138885662 @default.
- W3104738424 hasConcept C148483581 @default.
- W3104738424 hasConcept C153180895 @default.
- W3104738424 hasConcept C154945302 @default.