Matches in SemOpenAlex for { <https://semopenalex.org/work/W3104746700> ?p ?o ?g. }
- W3104746700 endingPage "5063" @default.
- W3104746700 startingPage "5063" @default.
- W3104746700 abstract "Though selective laser melting (SLM) has a rapidly increasing market these years, the quality of the SLM-fabricated part is extremely dependent on the process parameters. However, the current metallographic examination method to find the parameter window is time-consuming and involves subjective assessments of the experimenters. Here, we proposed a supervised machine learning (ML) method to detect the track defect and predict the printability of material in SLM intelligently. The printed tracks were classified into five types based on the measured surface morphologies and characteristics. The classification results were used as the target output of the ML model. Four indicators had been calculated to evaluate the quality of the tracks quantitatively, serving as input variables of the model. The data-driven model can determine the defect-free process parameter combination, which significantly improves the efficiency in searching the process parameter window and has great potential for the application in the unmanned factory in the future." @default.
- W3104746700 created "2020-11-23" @default.
- W3104746700 creator A5011158828 @default.
- W3104746700 creator A5025823052 @default.
- W3104746700 creator A5029068742 @default.
- W3104746700 creator A5030352944 @default.
- W3104746700 date "2020-11-10" @default.
- W3104746700 modified "2023-10-11" @default.
- W3104746700 title "Predicting the Printability in Selective Laser Melting with a Supervised Machine Learning Method" @default.
- W3104746700 cites W1506819938 @default.
- W3104746700 cites W1964810204 @default.
- W3104746700 cites W1965009340 @default.
- W3104746700 cites W1969792151 @default.
- W3104746700 cites W1980287119 @default.
- W3104746700 cites W2019915382 @default.
- W3104746700 cites W2023130848 @default.
- W3104746700 cites W2024853952 @default.
- W3104746700 cites W2073603707 @default.
- W3104746700 cites W2079268283 @default.
- W3104746700 cites W2214193224 @default.
- W3104746700 cites W2254884657 @default.
- W3104746700 cites W2279780730 @default.
- W3104746700 cites W2341236971 @default.
- W3104746700 cites W2464234006 @default.
- W3104746700 cites W2546371273 @default.
- W3104746700 cites W2587631633 @default.
- W3104746700 cites W2769827769 @default.
- W3104746700 cites W2769988472 @default.
- W3104746700 cites W2789411814 @default.
- W3104746700 cites W2796229351 @default.
- W3104746700 cites W2797690407 @default.
- W3104746700 cites W2886783527 @default.
- W3104746700 cites W2896104992 @default.
- W3104746700 cites W2953815116 @default.
- W3104746700 cites W2959026770 @default.
- W3104746700 cites W2965233700 @default.
- W3104746700 cites W2965754224 @default.
- W3104746700 cites W2990819255 @default.
- W3104746700 cites W2999876211 @default.
- W3104746700 cites W3016542160 @default.
- W3104746700 cites W4241426378 @default.
- W3104746700 cites W587588427 @default.
- W3104746700 doi "https://doi.org/10.3390/ma13225063" @default.
- W3104746700 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7698234" @default.
- W3104746700 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33182718" @default.
- W3104746700 hasPublicationYear "2020" @default.
- W3104746700 type Work @default.
- W3104746700 sameAs 3104746700 @default.
- W3104746700 citedByCount "25" @default.
- W3104746700 countsByYear W31047467002021 @default.
- W3104746700 countsByYear W31047467002022 @default.
- W3104746700 countsByYear W31047467002023 @default.
- W3104746700 crossrefType "journal-article" @default.
- W3104746700 hasAuthorship W3104746700A5011158828 @default.
- W3104746700 hasAuthorship W3104746700A5025823052 @default.
- W3104746700 hasAuthorship W3104746700A5029068742 @default.
- W3104746700 hasAuthorship W3104746700A5030352944 @default.
- W3104746700 hasBestOaLocation W31047467001 @default.
- W3104746700 hasConcept C102392041 @default.
- W3104746700 hasConcept C111472728 @default.
- W3104746700 hasConcept C111919701 @default.
- W3104746700 hasConcept C119857082 @default.
- W3104746700 hasConcept C127413603 @default.
- W3104746700 hasConcept C138885662 @default.
- W3104746700 hasConcept C153180895 @default.
- W3104746700 hasConcept C154945302 @default.
- W3104746700 hasConcept C159985019 @default.
- W3104746700 hasConcept C186060115 @default.
- W3104746700 hasConcept C192562407 @default.
- W3104746700 hasConcept C199360897 @default.
- W3104746700 hasConcept C21880701 @default.
- W3104746700 hasConcept C26796778 @default.
- W3104746700 hasConcept C2777441419 @default.
- W3104746700 hasConcept C2778751112 @default.
- W3104746700 hasConcept C2779530757 @default.
- W3104746700 hasConcept C40149104 @default.
- W3104746700 hasConcept C41008148 @default.
- W3104746700 hasConcept C86803240 @default.
- W3104746700 hasConcept C87976508 @default.
- W3104746700 hasConcept C93228742 @default.
- W3104746700 hasConcept C98045186 @default.
- W3104746700 hasConceptScore W3104746700C102392041 @default.
- W3104746700 hasConceptScore W3104746700C111472728 @default.
- W3104746700 hasConceptScore W3104746700C111919701 @default.
- W3104746700 hasConceptScore W3104746700C119857082 @default.
- W3104746700 hasConceptScore W3104746700C127413603 @default.
- W3104746700 hasConceptScore W3104746700C138885662 @default.
- W3104746700 hasConceptScore W3104746700C153180895 @default.
- W3104746700 hasConceptScore W3104746700C154945302 @default.
- W3104746700 hasConceptScore W3104746700C159985019 @default.
- W3104746700 hasConceptScore W3104746700C186060115 @default.
- W3104746700 hasConceptScore W3104746700C192562407 @default.
- W3104746700 hasConceptScore W3104746700C199360897 @default.
- W3104746700 hasConceptScore W3104746700C21880701 @default.
- W3104746700 hasConceptScore W3104746700C26796778 @default.
- W3104746700 hasConceptScore W3104746700C2777441419 @default.
- W3104746700 hasConceptScore W3104746700C2778751112 @default.
- W3104746700 hasConceptScore W3104746700C2779530757 @default.