Matches in SemOpenAlex for { <https://semopenalex.org/work/W3104815184> ?p ?o ?g. }
- W3104815184 endingPage "1950237" @default.
- W3104815184 startingPage "1950237" @default.
- W3104815184 abstract "It is of great significance to identify the characteristics of time series to qualify their similarity. We define six types of triadic time-series motifs and investigate the motif occurrence profiles extracted from logistic map, chaotic logistic map, chaotic Henon map, chaotic Ikeda map, hyperchaotic generalized Henon map and hyperchaotic folded-tower map. Based on the similarity of motif profiles, we further propose to estimate the similarity coefficients between different time series and classify these time series with high accuracy. We further apply the motif analysis method to the UCR Time Series Classification Archive and provide evidence of good classification ability for some data sets. Our analysis shows that the proposed triadic time series motif analysis performs better than the classic dynamic time wrapping method in classifying time series for certain data sets investigated in this work." @default.
- W3104815184 created "2020-11-23" @default.
- W3104815184 creator A5026276106 @default.
- W3104815184 creator A5074602607 @default.
- W3104815184 creator A5075941726 @default.
- W3104815184 date "2019-08-20" @default.
- W3104815184 modified "2023-09-25" @default.
- W3104815184 title "Time series classification based on triadic time series motifs" @default.
- W3104815184 cites W1513731586 @default.
- W3104815184 cites W1732493212 @default.
- W3104815184 cites W1789163674 @default.
- W3104815184 cites W1975527028 @default.
- W3104815184 cites W1978854979 @default.
- W3104815184 cites W1984100629 @default.
- W3104815184 cites W1985978480 @default.
- W3104815184 cites W1991108949 @default.
- W3104815184 cites W1999703755 @default.
- W3104815184 cites W2006761268 @default.
- W3104815184 cites W2006980549 @default.
- W3104815184 cites W2007701041 @default.
- W3104815184 cites W2011919716 @default.
- W3104815184 cites W2014683958 @default.
- W3104815184 cites W2025576039 @default.
- W3104815184 cites W2029314242 @default.
- W3104815184 cites W2029767187 @default.
- W3104815184 cites W2033651243 @default.
- W3104815184 cites W2034330526 @default.
- W3104815184 cites W2042205148 @default.
- W3104815184 cites W2053931644 @default.
- W3104815184 cites W2055538060 @default.
- W3104815184 cites W2070850275 @default.
- W3104815184 cites W2073087000 @default.
- W3104815184 cites W2085136972 @default.
- W3104815184 cites W2087242493 @default.
- W3104815184 cites W2091251669 @default.
- W3104815184 cites W2094755800 @default.
- W3104815184 cites W2164000012 @default.
- W3104815184 cites W2283896980 @default.
- W3104815184 cites W2315177179 @default.
- W3104815184 cites W2340170574 @default.
- W3104815184 cites W2342546612 @default.
- W3104815184 cites W2387837288 @default.
- W3104815184 cites W2486993146 @default.
- W3104815184 cites W2555077524 @default.
- W3104815184 cites W2616235482 @default.
- W3104815184 cites W2702877955 @default.
- W3104815184 cites W2742400585 @default.
- W3104815184 cites W2780746036 @default.
- W3104815184 cites W2792071264 @default.
- W3104815184 cites W2797178690 @default.
- W3104815184 cites W2899125647 @default.
- W3104815184 cites W2899906797 @default.
- W3104815184 cites W3101478121 @default.
- W3104815184 cites W3102002095 @default.
- W3104815184 cites W3102537848 @default.
- W3104815184 cites W585336894 @default.
- W3104815184 cites W8190504 @default.
- W3104815184 doi "https://doi.org/10.1142/s0217979219502370" @default.
- W3104815184 hasPublicationYear "2019" @default.
- W3104815184 type Work @default.
- W3104815184 sameAs 3104815184 @default.
- W3104815184 citedByCount "4" @default.
- W3104815184 countsByYear W31048151842020 @default.
- W3104815184 countsByYear W31048151842021 @default.
- W3104815184 crossrefType "journal-article" @default.
- W3104815184 hasAuthorship W3104815184A5026276106 @default.
- W3104815184 hasAuthorship W3104815184A5074602607 @default.
- W3104815184 hasAuthorship W3104815184A5075941726 @default.
- W3104815184 hasBestOaLocation W31048151842 @default.
- W3104815184 hasConcept C103278499 @default.
- W3104815184 hasConcept C11413529 @default.
- W3104815184 hasConcept C115961682 @default.
- W3104815184 hasConcept C119857082 @default.
- W3104815184 hasConcept C121332964 @default.
- W3104815184 hasConcept C124101348 @default.
- W3104815184 hasConcept C143724316 @default.
- W3104815184 hasConcept C151406439 @default.
- W3104815184 hasConcept C151730666 @default.
- W3104815184 hasConcept C153180895 @default.
- W3104815184 hasConcept C154945302 @default.
- W3104815184 hasConcept C205330730 @default.
- W3104815184 hasConcept C24890656 @default.
- W3104815184 hasConcept C2777052490 @default.
- W3104815184 hasConcept C2781402108 @default.
- W3104815184 hasConcept C32276052 @default.
- W3104815184 hasConcept C41008148 @default.
- W3104815184 hasConcept C86803240 @default.
- W3104815184 hasConceptScore W3104815184C103278499 @default.
- W3104815184 hasConceptScore W3104815184C11413529 @default.
- W3104815184 hasConceptScore W3104815184C115961682 @default.
- W3104815184 hasConceptScore W3104815184C119857082 @default.
- W3104815184 hasConceptScore W3104815184C121332964 @default.
- W3104815184 hasConceptScore W3104815184C124101348 @default.
- W3104815184 hasConceptScore W3104815184C143724316 @default.
- W3104815184 hasConceptScore W3104815184C151406439 @default.
- W3104815184 hasConceptScore W3104815184C151730666 @default.
- W3104815184 hasConceptScore W3104815184C153180895 @default.
- W3104815184 hasConceptScore W3104815184C154945302 @default.