Matches in SemOpenAlex for { <https://semopenalex.org/work/W3104846106> ?p ?o ?g. }
- W3104846106 endingPage "254" @default.
- W3104846106 startingPage "1" @default.
- W3104846106 abstract "Artificial Intelligence federates numerous scientific fields in the aim of developing machines able to assist human operators performing complex treatments -- most of which demand high cognitive skills (e.g. learning or decision processes). Central to this quest is to give machines the ability to estimate the likeness or similarity between things in the way human beings estimate the similarity between stimuli. In this context, this book focuses on semantic measures: approaches designed for comparing semantic entities such as units of language, e.g. words, sentences, or concepts and instances defined into knowledge bases. The aim of these measures is to assess the similarity or relatedness of such semantic entities by taking into account their semantics, i.e. their meaning -- intuitively, the words tea and coffee, which both refer to stimulating beverage, will be estimated to be more semantically similar than the words toffee (confection) and coffee, despite that the last pair has a higher syntactic similarity. The two state-of-the-art approaches for estimating and quantifying semantic similarities/relatedness of semantic entities are presented in detail: the first one relies on corpora analysis and is based on Natural Language Processing techniques and semantic models while the second is based on more or less formal, computer-readable and workable forms of knowledge such as semantic networks, thesaurus or ontologies. (...) Beyond a simple inventory and categorization of existing measures, the aim of this monograph is to convey novices as well as researchers of these domains towards a better understanding of semantic similarity estimation and more generally semantic measures." @default.
- W3104846106 created "2020-11-23" @default.
- W3104846106 creator A5019212344 @default.
- W3104846106 creator A5061724796 @default.
- W3104846106 creator A5072128914 @default.
- W3104846106 creator A5081436487 @default.
- W3104846106 date "2015-05-23" @default.
- W3104846106 modified "2023-10-13" @default.
- W3104846106 title "Semantic Similarity from Natural Language and Ontology Analysis" @default.
- W3104846106 cites W102708294 @default.
- W3104846106 cites W10647322 @default.
- W3104846106 cites W110635060 @default.
- W3104846106 cites W125769033 @default.
- W3104846106 cites W132483989 @default.
- W3104846106 cites W1483138209 @default.
- W3104846106 cites W1486477330 @default.
- W3104846106 cites W1487284788 @default.
- W3104846106 cites W1488808037 @default.
- W3104846106 cites W1522166085 @default.
- W3104846106 cites W153886719 @default.
- W3104846106 cites W1552480751 @default.
- W3104846106 cites W1561772068 @default.
- W3104846106 cites W1567365482 @default.
- W3104846106 cites W1577608236 @default.
- W3104846106 cites W1582470641 @default.
- W3104846106 cites W1582964678 @default.
- W3104846106 cites W1587714055 @default.
- W3104846106 cites W1591954893 @default.
- W3104846106 cites W1592081640 @default.
- W3104846106 cites W1593195594 @default.
- W3104846106 cites W1593239840 @default.
- W3104846106 cites W1599231733 @default.
- W3104846106 cites W1633328346 @default.
- W3104846106 cites W1633924705 @default.
- W3104846106 cites W1659833910 @default.
- W3104846106 cites W1662133657 @default.
- W3104846106 cites W1705467507 @default.
- W3104846106 cites W1781665229 @default.
- W3104846106 cites W1808782381 @default.
- W3104846106 cites W1818881584 @default.
- W3104846106 cites W187228978 @default.
- W3104846106 cites W1886319227 @default.
- W3104846106 cites W1915092146 @default.
- W3104846106 cites W1964209958 @default.
- W3104846106 cites W1964808688 @default.
- W3104846106 cites W1965605789 @default.
- W3104846106 cites W1968266296 @default.
- W3104846106 cites W1969949803 @default.
- W3104846106 cites W1970264778 @default.
- W3104846106 cites W1971220772 @default.
- W3104846106 cites W1972714715 @default.
- W3104846106 cites W1973754941 @default.
- W3104846106 cites W1975369408 @default.
- W3104846106 cites W1977878983 @default.
- W3104846106 cites W1978400666 @default.
- W3104846106 cites W1978697738 @default.
- W3104846106 cites W1979325497 @default.
- W3104846106 cites W1980318031 @default.
- W3104846106 cites W1980862600 @default.
- W3104846106 cites W1980885411 @default.
- W3104846106 cites W1980948656 @default.
- W3104846106 cites W1981617416 @default.
- W3104846106 cites W1982323159 @default.
- W3104846106 cites W1983578042 @default.
- W3104846106 cites W1984052055 @default.
- W3104846106 cites W1987780272 @default.
- W3104846106 cites W1990524510 @default.
- W3104846106 cites W1992419399 @default.
- W3104846106 cites W1992914835 @default.
- W3104846106 cites W1995875735 @default.
- W3104846106 cites W1996989641 @default.
- W3104846106 cites W1998384440 @default.
- W3104846106 cites W2000963751 @default.
- W3104846106 cites W2003240077 @default.
- W3104846106 cites W2007038646 @default.
- W3104846106 cites W2009407994 @default.
- W3104846106 cites W2010027150 @default.
- W3104846106 cites W2011999472 @default.
- W3104846106 cites W2013093146 @default.
- W3104846106 cites W2016412752 @default.
- W3104846106 cites W2017936606 @default.
- W3104846106 cites W2020438140 @default.
- W3104846106 cites W2023918104 @default.
- W3104846106 cites W2025452874 @default.
- W3104846106 cites W2026487812 @default.
- W3104846106 cites W2026524094 @default.
- W3104846106 cites W2026644166 @default.
- W3104846106 cites W2027160374 @default.
- W3104846106 cites W2027796863 @default.
- W3104846106 cites W2034893208 @default.
- W3104846106 cites W2035726644 @default.
- W3104846106 cites W2037955148 @default.
- W3104846106 cites W2038284561 @default.
- W3104846106 cites W2039336675 @default.
- W3104846106 cites W2041025542 @default.
- W3104846106 cites W2042301222 @default.
- W3104846106 cites W2042799718 @default.
- W3104846106 cites W2046482984 @default.