Matches in SemOpenAlex for { <https://semopenalex.org/work/W3104850917> ?p ?o ?g. }
- W3104850917 endingPage "4911" @default.
- W3104850917 startingPage "4887" @default.
- W3104850917 abstract "In this paper, we explore quantum interference (QI) in molecular conductance from the point of view of graph theory and walks on lattices. By virtue of the Cayley–Hamilton theorem for characteristic polynomials and the Coulson–Rushbrooke pairing theorem for alternant hydrocarbons, it is possible to derive a finite series expansion of the Green’s function for electron transmission in terms of the odd powers of the vertex adjacency matrix or Hückel matrix. This means that only odd-length walks on a molecular graph contribute to the conductivity through a molecule. Thus, if there are only even-length walks between two atoms, quantum interference is expected to occur in the electron transport between them. However, even if there are only odd-length walks between two atoms, a situation may come about where the contributions to the QI of some odd-length walks are canceled by others, leading to another class of quantum interference. For nonalternant hydrocarbons, the finite Green’s function expansion may include both even and odd powers. Nevertheless, QI can in some circumstances come about for nonalternants from cancellation of odd- and even-length walk terms. We report some progress, but not a complete resolution, of the problem of understanding the coefficients in the expansion of the Green’s function in a power series of the adjacency matrix, these coefficients being behind the cancellations that we have mentioned. Furthermore, we introduce a perturbation theory for transmission as well as some potentially useful infinite power series expansions of the Green’s function." @default.
- W3104850917 created "2020-11-23" @default.
- W3104850917 creator A5001331359 @default.
- W3104850917 creator A5032080268 @default.
- W3104850917 creator A5042185860 @default.
- W3104850917 creator A5056471458 @default.
- W3104850917 date "2018-04-09" @default.
- W3104850917 modified "2023-09-25" @default.
- W3104850917 title "Quantum Interference, Graphs, Walks, and Polynomials" @default.
- W3104850917 cites W180160316 @default.
- W3104850917 cites W1964101277 @default.
- W3104850917 cites W1968451618 @default.
- W3104850917 cites W1968621955 @default.
- W3104850917 cites W1973803682 @default.
- W3104850917 cites W1974934055 @default.
- W3104850917 cites W1977460640 @default.
- W3104850917 cites W1977797051 @default.
- W3104850917 cites W1979070248 @default.
- W3104850917 cites W1982627708 @default.
- W3104850917 cites W1983279317 @default.
- W3104850917 cites W1987138233 @default.
- W3104850917 cites W1987523637 @default.
- W3104850917 cites W1990027995 @default.
- W3104850917 cites W1990780633 @default.
- W3104850917 cites W1990905078 @default.
- W3104850917 cites W1991243452 @default.
- W3104850917 cites W1995428489 @default.
- W3104850917 cites W1996769096 @default.
- W3104850917 cites W1997093580 @default.
- W3104850917 cites W2000462523 @default.
- W3104850917 cites W2002340347 @default.
- W3104850917 cites W2003900180 @default.
- W3104850917 cites W2005640439 @default.
- W3104850917 cites W2006006349 @default.
- W3104850917 cites W2007981503 @default.
- W3104850917 cites W2008281970 @default.
- W3104850917 cites W2008793071 @default.
- W3104850917 cites W2012297865 @default.
- W3104850917 cites W2014155193 @default.
- W3104850917 cites W2014432427 @default.
- W3104850917 cites W2018190005 @default.
- W3104850917 cites W2018756269 @default.
- W3104850917 cites W2019547201 @default.
- W3104850917 cites W2024901770 @default.
- W3104850917 cites W2026971668 @default.
- W3104850917 cites W2029400861 @default.
- W3104850917 cites W2029836622 @default.
- W3104850917 cites W2032998433 @default.
- W3104850917 cites W2039789659 @default.
- W3104850917 cites W2040570147 @default.
- W3104850917 cites W2041813408 @default.
- W3104850917 cites W2041814141 @default.
- W3104850917 cites W2042631698 @default.
- W3104850917 cites W2043646396 @default.
- W3104850917 cites W2043733443 @default.
- W3104850917 cites W2045554684 @default.
- W3104850917 cites W2050642244 @default.
- W3104850917 cites W2050862223 @default.
- W3104850917 cites W2055523190 @default.
- W3104850917 cites W2057260171 @default.
- W3104850917 cites W2058724709 @default.
- W3104850917 cites W2059916823 @default.
- W3104850917 cites W2060394246 @default.
- W3104850917 cites W2062277720 @default.
- W3104850917 cites W2066991715 @default.
- W3104850917 cites W2068698877 @default.
- W3104850917 cites W2070197634 @default.
- W3104850917 cites W2070896310 @default.
- W3104850917 cites W2071588921 @default.
- W3104850917 cites W2072520426 @default.
- W3104850917 cites W2075080142 @default.
- W3104850917 cites W2075758407 @default.
- W3104850917 cites W2077203661 @default.
- W3104850917 cites W2086485564 @default.
- W3104850917 cites W2088052552 @default.
- W3104850917 cites W2089487032 @default.
- W3104850917 cites W2095090586 @default.
- W3104850917 cites W2111830703 @default.
- W3104850917 cites W2116228988 @default.
- W3104850917 cites W2119773255 @default.
- W3104850917 cites W2122225830 @default.
- W3104850917 cites W2126036157 @default.
- W3104850917 cites W2129136550 @default.
- W3104850917 cites W2129847230 @default.
- W3104850917 cites W2131136755 @default.
- W3104850917 cites W2145849585 @default.
- W3104850917 cites W2149751265 @default.
- W3104850917 cites W2152013874 @default.
- W3104850917 cites W2153440669 @default.
- W3104850917 cites W2159441236 @default.
- W3104850917 cites W2168613311 @default.
- W3104850917 cites W2233269772 @default.
- W3104850917 cites W2273313156 @default.
- W3104850917 cites W2314299722 @default.
- W3104850917 cites W2315007066 @default.
- W3104850917 cites W2318459708 @default.
- W3104850917 cites W2318857129 @default.
- W3104850917 cites W2331808691 @default.