Matches in SemOpenAlex for { <https://semopenalex.org/work/W3104897427> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W3104897427 abstract "To estimate quantities of a flow field online, the computational cost of observers must be reduced. In this paper, we propose a method for designing computationally inexpensive observers for fluid flows with the aid of machine learning techniques. In the proposed method, an observer is first designed for a full-order model for the fluid flow, and the input/output data of the observer are obtained in the numerical simulation. Next, an observer imitating the original observer is extracted from these input/output data by using machine learning techniques. As a benchmark problem, we design observers for the flow around a cylinder with the proposed method. By using linear system identification and Gaussian process regression, two observers were extracted from the input/output data of the ensemble Kalman filter (EnKF) which is designed based on a full-order model. The numerical simulations revealed that the velocity distribution around the cylinder was successfully estimated from the surface pressure by the extracted observers in a short computation time. In particular, the observer extracted by Gaussian process regression showed almost the same estimation accuracy as the full-order EnKF." @default.
- W3104897427 created "2020-11-23" @default.
- W3104897427 creator A5012602916 @default.
- W3104897427 creator A5077522032 @default.
- W3104897427 date "2020-09-23" @default.
- W3104897427 modified "2023-09-27" @default.
- W3104897427 title "Design of Observers for the Flow around a Cylinder using Machine Learning Techniques" @default.
- W3104897427 cites W2007581597 @default.
- W3104897427 cites W2014356541 @default.
- W3104897427 cites W2059316647 @default.
- W3104897427 cites W2076939057 @default.
- W3104897427 cites W2098077093 @default.
- W3104897427 cites W2119007379 @default.
- W3104897427 cites W2124609748 @default.
- W3104897427 cites W2807239080 @default.
- W3104897427 cites W2908517370 @default.
- W3104897427 cites W2955160559 @default.
- W3104897427 cites W3011358343 @default.
- W3104897427 doi "https://doi.org/10.23919/sice48898.2020.9240325" @default.
- W3104897427 hasPublicationYear "2020" @default.
- W3104897427 type Work @default.
- W3104897427 sameAs 3104897427 @default.
- W3104897427 citedByCount "1" @default.
- W3104897427 countsByYear W31048974272022 @default.
- W3104897427 crossrefType "proceedings-article" @default.
- W3104897427 hasAuthorship W3104897427A5012602916 @default.
- W3104897427 hasAuthorship W3104897427A5077522032 @default.
- W3104897427 hasConcept C11413529 @default.
- W3104897427 hasConcept C119857082 @default.
- W3104897427 hasConcept C121332964 @default.
- W3104897427 hasConcept C154945302 @default.
- W3104897427 hasConcept C157286648 @default.
- W3104897427 hasConcept C163716315 @default.
- W3104897427 hasConcept C203311528 @default.
- W3104897427 hasConcept C2524010 @default.
- W3104897427 hasConcept C2775924081 @default.
- W3104897427 hasConcept C2780704645 @default.
- W3104897427 hasConcept C33923547 @default.
- W3104897427 hasConcept C41008148 @default.
- W3104897427 hasConcept C45374587 @default.
- W3104897427 hasConcept C47446073 @default.
- W3104897427 hasConcept C61326573 @default.
- W3104897427 hasConcept C62520636 @default.
- W3104897427 hasConcept C81692654 @default.
- W3104897427 hasConceptScore W3104897427C11413529 @default.
- W3104897427 hasConceptScore W3104897427C119857082 @default.
- W3104897427 hasConceptScore W3104897427C121332964 @default.
- W3104897427 hasConceptScore W3104897427C154945302 @default.
- W3104897427 hasConceptScore W3104897427C157286648 @default.
- W3104897427 hasConceptScore W3104897427C163716315 @default.
- W3104897427 hasConceptScore W3104897427C203311528 @default.
- W3104897427 hasConceptScore W3104897427C2524010 @default.
- W3104897427 hasConceptScore W3104897427C2775924081 @default.
- W3104897427 hasConceptScore W3104897427C2780704645 @default.
- W3104897427 hasConceptScore W3104897427C33923547 @default.
- W3104897427 hasConceptScore W3104897427C41008148 @default.
- W3104897427 hasConceptScore W3104897427C45374587 @default.
- W3104897427 hasConceptScore W3104897427C47446073 @default.
- W3104897427 hasConceptScore W3104897427C61326573 @default.
- W3104897427 hasConceptScore W3104897427C62520636 @default.
- W3104897427 hasConceptScore W3104897427C81692654 @default.
- W3104897427 hasLocation W31048974271 @default.
- W3104897427 hasOpenAccess W3104897427 @default.
- W3104897427 hasPrimaryLocation W31048974271 @default.
- W3104897427 hasRelatedWork W1986455096 @default.
- W3104897427 hasRelatedWork W1989984117 @default.
- W3104897427 hasRelatedWork W2054292308 @default.
- W3104897427 hasRelatedWork W2063381173 @default.
- W3104897427 hasRelatedWork W2352749079 @default.
- W3104897427 hasRelatedWork W2734790415 @default.
- W3104897427 hasRelatedWork W2766039560 @default.
- W3104897427 hasRelatedWork W2964322376 @default.
- W3104897427 hasRelatedWork W4289548246 @default.
- W3104897427 hasRelatedWork W4295105946 @default.
- W3104897427 isParatext "false" @default.
- W3104897427 isRetracted "false" @default.
- W3104897427 magId "3104897427" @default.
- W3104897427 workType "article" @default.