Matches in SemOpenAlex for { <https://semopenalex.org/work/W3104898082> ?p ?o ?g. }
- W3104898082 endingPage "65" @default.
- W3104898082 startingPage "52" @default.
- W3104898082 abstract "Gaussian Markov random fields (GMRFs) are popular for modeling dependence in large areal datasets due to their ease of interpretation and computational convenience afforded by the sparse precision matrices needed for random variable generation. Typically in Bayesian computation, GMRFs are updated jointly in a block Gibbs sampler or componentwise in a single-site sampler via the full conditional distributions. The former approach can speed convergence by updating correlated variables all at once, while the latter avoids solving large matrices. We consider a sampling approach in which the underlying graph can be cut so that conditionally independent sites are updated simultaneously. This algorithm allows a practitioner to parallelize updates of subsets of locations or to take advantage of 'vectorized' calculations in a high-level language such as R. Through both simulated and real data, we demonstrate computational savings that can be achieved versus both single-site and block updating, regardless of whether the data are on a regular or an irregular lattice. The approach provides a good compromise between statistical and computational efficiency and is accessible to statisticians without expertise in numerical analysis or advanced computing." @default.
- W3104898082 created "2020-11-23" @default.
- W3104898082 creator A5000105853 @default.
- W3104898082 creator A5026999963 @default.
- W3104898082 creator A5038849552 @default.
- W3104898082 date "2019-05-31" @default.
- W3104898082 modified "2023-09-25" @default.
- W3104898082 title "Sampling Strategies for Fast Updating of Gaussian Markov Random Fields" @default.
- W3104898082 cites W143236119 @default.
- W3104898082 cites W1517555081 @default.
- W3104898082 cites W1536497620 @default.
- W3104898082 cites W1554544485 @default.
- W3104898082 cites W1747046542 @default.
- W3104898082 cites W1785118084 @default.
- W3104898082 cites W1837874438 @default.
- W3104898082 cites W1951294597 @default.
- W3104898082 cites W1966927337 @default.
- W3104898082 cites W1969466749 @default.
- W3104898082 cites W1971566990 @default.
- W3104898082 cites W1989730355 @default.
- W3104898082 cites W1990058630 @default.
- W3104898082 cites W2004014822 @default.
- W3104898082 cites W2006317942 @default.
- W3104898082 cites W2020999234 @default.
- W3104898082 cites W2027319489 @default.
- W3104898082 cites W2032769021 @default.
- W3104898082 cites W2035763857 @default.
- W3104898082 cites W2041738000 @default.
- W3104898082 cites W2044401046 @default.
- W3104898082 cites W2046332585 @default.
- W3104898082 cites W2056760934 @default.
- W3104898082 cites W2062943478 @default.
- W3104898082 cites W2069816168 @default.
- W3104898082 cites W2069876697 @default.
- W3104898082 cites W2079026635 @default.
- W3104898082 cites W2082089002 @default.
- W3104898082 cites W2083875149 @default.
- W3104898082 cites W2099878672 @default.
- W3104898082 cites W2112575355 @default.
- W3104898082 cites W2114220616 @default.
- W3104898082 cites W2138309709 @default.
- W3104898082 cites W2144898279 @default.
- W3104898082 cites W2159325249 @default.
- W3104898082 cites W2160277013 @default.
- W3104898082 cites W2162898443 @default.
- W3104898082 cites W2166414779 @default.
- W3104898082 cites W2167036627 @default.
- W3104898082 cites W2167943787 @default.
- W3104898082 cites W2963901148 @default.
- W3104898082 cites W3121960496 @default.
- W3104898082 cites W4238253035 @default.
- W3104898082 cites W4243595379 @default.
- W3104898082 cites W4249731213 @default.
- W3104898082 cites W4292691288 @default.
- W3104898082 doi "https://doi.org/10.1080/00031305.2019.1595144" @default.
- W3104898082 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7954130" @default.
- W3104898082 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33716305" @default.
- W3104898082 hasPublicationYear "2019" @default.
- W3104898082 type Work @default.
- W3104898082 sameAs 3104898082 @default.
- W3104898082 citedByCount "8" @default.
- W3104898082 countsByYear W31048980822020 @default.
- W3104898082 countsByYear W31048980822021 @default.
- W3104898082 countsByYear W31048980822022 @default.
- W3104898082 countsByYear W31048980822023 @default.
- W3104898082 crossrefType "journal-article" @default.
- W3104898082 hasAuthorship W3104898082A5000105853 @default.
- W3104898082 hasAuthorship W3104898082A5026999963 @default.
- W3104898082 hasAuthorship W3104898082A5038849552 @default.
- W3104898082 hasBestOaLocation W31048980822 @default.
- W3104898082 hasConcept C106131492 @default.
- W3104898082 hasConcept C107673813 @default.
- W3104898082 hasConcept C11413529 @default.
- W3104898082 hasConcept C119857082 @default.
- W3104898082 hasConcept C121332964 @default.
- W3104898082 hasConcept C140779682 @default.
- W3104898082 hasConcept C154945302 @default.
- W3104898082 hasConcept C158424031 @default.
- W3104898082 hasConcept C163716315 @default.
- W3104898082 hasConcept C176222170 @default.
- W3104898082 hasConcept C2524010 @default.
- W3104898082 hasConcept C2777210771 @default.
- W3104898082 hasConcept C31972630 @default.
- W3104898082 hasConcept C33923547 @default.
- W3104898082 hasConcept C41008148 @default.
- W3104898082 hasConcept C45374587 @default.
- W3104898082 hasConcept C62520636 @default.
- W3104898082 hasConcept C98763669 @default.
- W3104898082 hasConceptScore W3104898082C106131492 @default.
- W3104898082 hasConceptScore W3104898082C107673813 @default.
- W3104898082 hasConceptScore W3104898082C11413529 @default.
- W3104898082 hasConceptScore W3104898082C119857082 @default.
- W3104898082 hasConceptScore W3104898082C121332964 @default.
- W3104898082 hasConceptScore W3104898082C140779682 @default.
- W3104898082 hasConceptScore W3104898082C154945302 @default.
- W3104898082 hasConceptScore W3104898082C158424031 @default.
- W3104898082 hasConceptScore W3104898082C163716315 @default.
- W3104898082 hasConceptScore W3104898082C176222170 @default.