Matches in SemOpenAlex for { <https://semopenalex.org/work/W3104908081> ?p ?o ?g. }
- W3104908081 endingPage "044003" @default.
- W3104908081 startingPage "044003" @default.
- W3104908081 abstract "Hyperspectral imaging is a cutting-edge type of remote sensing used for mapping vegetation properties, rock minerals and other materials. A major drawback of hyperspectral imaging devices is their intrinsic low spatial resolution. In this paper, we propose a method for increasing the spatial resolution of a hyperspectral image by fusing it with an image of higher spatial resolution that was obtained with a different imaging modality. This is accomplished by solving a variational problem in which the regularization functional is the directional total variation. To accommodate for possible mis-registrations between the two images, we consider a non-convex blind super-resolution problem where both a fused image and the corresponding convolution kernel are estimated. Using this approach, our model can realign the given images if needed. Our experimental results indicate that the non-convexity is negligible in practice and that reliable solutions can be computed using a variety of different optimization algorithms. Numerical results on real remote sensing data from plant sciences and urban monitoring show the potential of the proposed method and suggests that it is robust with respect to the regularization parameters, mis-registration and the shape of the kernel." @default.
- W3104908081 created "2020-11-23" @default.
- W3104908081 creator A5032684019 @default.
- W3104908081 creator A5035045595 @default.
- W3104908081 creator A5042546656 @default.
- W3104908081 creator A5077238668 @default.
- W3104908081 creator A5078070589 @default.
- W3104908081 creator A5089619012 @default.
- W3104908081 date "2018-03-08" @default.
- W3104908081 modified "2023-10-16" @default.
- W3104908081 title "Blind image fusion for hyperspectral imaging with the directional total variation" @default.
- W3104908081 cites W1579559187 @default.
- W3104908081 cites W1681747385 @default.
- W3104908081 cites W1805309860 @default.
- W3104908081 cites W2000462146 @default.
- W3104908081 cites W2000594266 @default.
- W3104908081 cites W2006262045 @default.
- W3104908081 cites W2017915264 @default.
- W3104908081 cites W2019569173 @default.
- W3104908081 cites W2021046129 @default.
- W3104908081 cites W2023911449 @default.
- W3104908081 cites W2027231794 @default.
- W3104908081 cites W2027547498 @default.
- W3104908081 cites W2027982384 @default.
- W3104908081 cites W2037922117 @default.
- W3104908081 cites W2039733317 @default.
- W3104908081 cites W2045079045 @default.
- W3104908081 cites W2047884269 @default.
- W3104908081 cites W2083059319 @default.
- W3104908081 cites W2099704405 @default.
- W3104908081 cites W2100556411 @default.
- W3104908081 cites W2100705753 @default.
- W3104908081 cites W2103559027 @default.
- W3104908081 cites W2112693869 @default.
- W3104908081 cites W2112732795 @default.
- W3104908081 cites W2117406282 @default.
- W3104908081 cites W2125008487 @default.
- W3104908081 cites W2129732816 @default.
- W3104908081 cites W2130645492 @default.
- W3104908081 cites W2130660880 @default.
- W3104908081 cites W2133665775 @default.
- W3104908081 cites W2137686139 @default.
- W3104908081 cites W2142224912 @default.
- W3104908081 cites W2150623992 @default.
- W3104908081 cites W2169053308 @default.
- W3104908081 cites W2336208919 @default.
- W3104908081 cites W2460041091 @default.
- W3104908081 cites W2481798478 @default.
- W3104908081 cites W2549127690 @default.
- W3104908081 cites W2584630067 @default.
- W3104908081 cites W2620613906 @default.
- W3104908081 cites W2624909539 @default.
- W3104908081 cites W2963442801 @default.
- W3104908081 cites W3099887894 @default.
- W3104908081 cites W3100694778 @default.
- W3104908081 cites W3101805643 @default.
- W3104908081 cites W3105097574 @default.
- W3104908081 cites W4292363360 @default.
- W3104908081 doi "https://doi.org/10.1088/1361-6420/aaaf63" @default.
- W3104908081 hasPublicationYear "2018" @default.
- W3104908081 type Work @default.
- W3104908081 sameAs 3104908081 @default.
- W3104908081 citedByCount "37" @default.
- W3104908081 countsByYear W31049080812018 @default.
- W3104908081 countsByYear W31049080812019 @default.
- W3104908081 countsByYear W31049080812020 @default.
- W3104908081 countsByYear W31049080812021 @default.
- W3104908081 countsByYear W31049080812022 @default.
- W3104908081 countsByYear W31049080812023 @default.
- W3104908081 crossrefType "journal-article" @default.
- W3104908081 hasAuthorship W3104908081A5032684019 @default.
- W3104908081 hasAuthorship W3104908081A5035045595 @default.
- W3104908081 hasAuthorship W3104908081A5042546656 @default.
- W3104908081 hasAuthorship W3104908081A5077238668 @default.
- W3104908081 hasAuthorship W3104908081A5078070589 @default.
- W3104908081 hasAuthorship W3104908081A5089619012 @default.
- W3104908081 hasBestOaLocation W31049080811 @default.
- W3104908081 hasConcept C11413529 @default.
- W3104908081 hasConcept C114614502 @default.
- W3104908081 hasConcept C115961682 @default.
- W3104908081 hasConcept C127313418 @default.
- W3104908081 hasConcept C153180895 @default.
- W3104908081 hasConcept C154945302 @default.
- W3104908081 hasConcept C159078339 @default.
- W3104908081 hasConcept C205372480 @default.
- W3104908081 hasConcept C207282899 @default.
- W3104908081 hasConcept C2776135515 @default.
- W3104908081 hasConcept C31972630 @default.
- W3104908081 hasConcept C33923547 @default.
- W3104908081 hasConcept C41008148 @default.
- W3104908081 hasConcept C62649853 @default.
- W3104908081 hasConcept C69744172 @default.
- W3104908081 hasConcept C74193536 @default.
- W3104908081 hasConceptScore W3104908081C11413529 @default.
- W3104908081 hasConceptScore W3104908081C114614502 @default.
- W3104908081 hasConceptScore W3104908081C115961682 @default.
- W3104908081 hasConceptScore W3104908081C127313418 @default.
- W3104908081 hasConceptScore W3104908081C153180895 @default.