Matches in SemOpenAlex for { <https://semopenalex.org/work/W3104938851> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W3104938851 abstract "This paper proposes an improved deep deterministic policy gradient (DDPG) algorithm in the morphing policy designing for a kind of morphing unmanned aerial vehicles (UAVs) Considering that random selection in reinforcement learning structure is not always an efficient iterative update method, prioritized sweeping approach is introduced into the DDPG-based deep reinforcement learning framework, and the original DDPG algorithm is optimized to avoid random selection of state action pairs (SAPs). Consequently, the efficiency reduction problem in the traditional reinforcement learning structure is weakened. The proposed improved DDPG algorithm has better learning performance and can make reasonable decisions about environmental changes. A simulation experiment is carried out on the designed algorithm. By building a reinforcement learning model of the Markov decision process, the simulation results verify the effectiveness and superiority of the designed algorithm." @default.
- W3104938851 created "2020-11-23" @default.
- W3104938851 creator A5030750885 @default.
- W3104938851 creator A5057973620 @default.
- W3104938851 creator A5079096032 @default.
- W3104938851 creator A5084379415 @default.
- W3104938851 date "2020-10-18" @default.
- W3104938851 modified "2023-10-18" @default.
- W3104938851 title "Morphing Strategy Design for UAV based on Prioritized Sweeping Reinforcement Learning" @default.
- W3104938851 cites W2145339207 @default.
- W3104938851 cites W2498017881 @default.
- W3104938851 cites W2768956845 @default.
- W3104938851 cites W2775482448 @default.
- W3104938851 cites W2791797404 @default.
- W3104938851 cites W2888896501 @default.
- W3104938851 cites W2917949158 @default.
- W3104938851 cites W2949226003 @default.
- W3104938851 cites W2963317745 @default.
- W3104938851 cites W2963761387 @default.
- W3104938851 cites W3106357768 @default.
- W3104938851 doi "https://doi.org/10.1109/iecon43393.2020.9254664" @default.
- W3104938851 hasPublicationYear "2020" @default.
- W3104938851 type Work @default.
- W3104938851 sameAs 3104938851 @default.
- W3104938851 citedByCount "1" @default.
- W3104938851 countsByYear W31049388512023 @default.
- W3104938851 crossrefType "proceedings-article" @default.
- W3104938851 hasAuthorship W3104938851A5030750885 @default.
- W3104938851 hasAuthorship W3104938851A5057973620 @default.
- W3104938851 hasAuthorship W3104938851A5079096032 @default.
- W3104938851 hasAuthorship W3104938851A5084379415 @default.
- W3104938851 hasConcept C107457646 @default.
- W3104938851 hasConcept C154945302 @default.
- W3104938851 hasConcept C41008148 @default.
- W3104938851 hasConcept C50637493 @default.
- W3104938851 hasConcept C97541855 @default.
- W3104938851 hasConceptScore W3104938851C107457646 @default.
- W3104938851 hasConceptScore W3104938851C154945302 @default.
- W3104938851 hasConceptScore W3104938851C41008148 @default.
- W3104938851 hasConceptScore W3104938851C50637493 @default.
- W3104938851 hasConceptScore W3104938851C97541855 @default.
- W3104938851 hasFunder F4320321001 @default.
- W3104938851 hasLocation W31049388511 @default.
- W3104938851 hasOpenAccess W3104938851 @default.
- W3104938851 hasPrimaryLocation W31049388511 @default.
- W3104938851 hasRelatedWork W1562959674 @default.
- W3104938851 hasRelatedWork W2170396314 @default.
- W3104938851 hasRelatedWork W2324913528 @default.
- W3104938851 hasRelatedWork W2923653485 @default.
- W3104938851 hasRelatedWork W2957776456 @default.
- W3104938851 hasRelatedWork W3104938851 @default.
- W3104938851 hasRelatedWork W3204024426 @default.
- W3104938851 hasRelatedWork W4210912933 @default.
- W3104938851 hasRelatedWork W4214924096 @default.
- W3104938851 hasRelatedWork W4224287422 @default.
- W3104938851 isParatext "false" @default.
- W3104938851 isRetracted "false" @default.
- W3104938851 magId "3104938851" @default.
- W3104938851 workType "article" @default.