Matches in SemOpenAlex for { <https://semopenalex.org/work/W3104955410> ?p ?o ?g. }
- W3104955410 endingPage "8386" @default.
- W3104955410 startingPage "8386" @default.
- W3104955410 abstract "This paper analyzes a sample of patients hospitalized with COVID-19 in the region of Madrid (Spain). Survival analysis, logistic regression, and machine learning techniques (both supervised and unsupervised) are applied to carry out the analysis where the endpoint variable is the reason for hospital discharge (home or deceased). The different methods applied show the importance of variables such as age, O2 saturation at Emergency Rooms (ER), and whether the patient comes from a nursing home. In addition, biclustering is used to globally analyze the patient-drug dataset, extracting segments of patients. We highlight the validity of the classifiers developed to predict the mortality, reaching an appreciable accuracy. Finally, interpretable decision rules for estimating the risk of mortality of patients can be obtained from the decision tree, which can be crucial in the prioritization of medical care and resources." @default.
- W3104955410 created "2020-11-23" @default.
- W3104955410 creator A5010107726 @default.
- W3104955410 creator A5038909009 @default.
- W3104955410 creator A5048932754 @default.
- W3104955410 creator A5063325355 @default.
- W3104955410 creator A5068170350 @default.
- W3104955410 date "2020-11-12" @default.
- W3104955410 modified "2023-10-18" @default.
- W3104955410 title "Machine Learning for Mortality Analysis in Patients with COVID-19" @default.
- W3104955410 cites W2036328877 @default.
- W3104955410 cites W2156665896 @default.
- W3104955410 cites W2911964244 @default.
- W3104955410 cites W3019119825 @default.
- W3104955410 cites W3024251435 @default.
- W3104955410 cites W3028711203 @default.
- W3104955410 cites W3031038801 @default.
- W3104955410 cites W3031443331 @default.
- W3104955410 cites W3031876060 @default.
- W3104955410 cites W3036552116 @default.
- W3104955410 cites W3037163353 @default.
- W3104955410 cites W3037372169 @default.
- W3104955410 cites W3040158616 @default.
- W3104955410 cites W3043042923 @default.
- W3104955410 cites W3046387265 @default.
- W3104955410 cites W3047995842 @default.
- W3104955410 cites W3049059630 @default.
- W3104955410 cites W3049131298 @default.
- W3104955410 cites W3049688808 @default.
- W3104955410 cites W3067119061 @default.
- W3104955410 cites W3080253954 @default.
- W3104955410 cites W3080283740 @default.
- W3104955410 cites W3080389542 @default.
- W3104955410 cites W3080468264 @default.
- W3104955410 cites W3080562047 @default.
- W3104955410 cites W3080590497 @default.
- W3104955410 cites W3080804747 @default.
- W3104955410 cites W3081182870 @default.
- W3104955410 cites W3089552093 @default.
- W3104955410 cites W3093928028 @default.
- W3104955410 cites W3096121047 @default.
- W3104955410 cites W4293241248 @default.
- W3104955410 doi "https://doi.org/10.3390/ijerph17228386" @default.
- W3104955410 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7697463" @default.
- W3104955410 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33198392" @default.
- W3104955410 hasPublicationYear "2020" @default.
- W3104955410 type Work @default.
- W3104955410 sameAs 3104955410 @default.
- W3104955410 citedByCount "31" @default.
- W3104955410 countsByYear W31049554102020 @default.
- W3104955410 countsByYear W31049554102021 @default.
- W3104955410 countsByYear W31049554102022 @default.
- W3104955410 countsByYear W31049554102023 @default.
- W3104955410 crossrefType "journal-article" @default.
- W3104955410 hasAuthorship W3104955410A5010107726 @default.
- W3104955410 hasAuthorship W3104955410A5038909009 @default.
- W3104955410 hasAuthorship W3104955410A5048932754 @default.
- W3104955410 hasAuthorship W3104955410A5063325355 @default.
- W3104955410 hasAuthorship W3104955410A5068170350 @default.
- W3104955410 hasBestOaLocation W31049554101 @default.
- W3104955410 hasConcept C105795698 @default.
- W3104955410 hasConcept C119857082 @default.
- W3104955410 hasConcept C126322002 @default.
- W3104955410 hasConcept C127413603 @default.
- W3104955410 hasConcept C151956035 @default.
- W3104955410 hasConcept C154945302 @default.
- W3104955410 hasConcept C194828623 @default.
- W3104955410 hasConcept C2777615720 @default.
- W3104955410 hasConcept C2779134260 @default.
- W3104955410 hasConcept C3008058167 @default.
- W3104955410 hasConcept C33923547 @default.
- W3104955410 hasConcept C41008148 @default.
- W3104955410 hasConcept C524204448 @default.
- W3104955410 hasConcept C539667460 @default.
- W3104955410 hasConcept C545542383 @default.
- W3104955410 hasConcept C71924100 @default.
- W3104955410 hasConcept C84525736 @default.
- W3104955410 hasConceptScore W3104955410C105795698 @default.
- W3104955410 hasConceptScore W3104955410C119857082 @default.
- W3104955410 hasConceptScore W3104955410C126322002 @default.
- W3104955410 hasConceptScore W3104955410C127413603 @default.
- W3104955410 hasConceptScore W3104955410C151956035 @default.
- W3104955410 hasConceptScore W3104955410C154945302 @default.
- W3104955410 hasConceptScore W3104955410C194828623 @default.
- W3104955410 hasConceptScore W3104955410C2777615720 @default.
- W3104955410 hasConceptScore W3104955410C2779134260 @default.
- W3104955410 hasConceptScore W3104955410C3008058167 @default.
- W3104955410 hasConceptScore W3104955410C33923547 @default.
- W3104955410 hasConceptScore W3104955410C41008148 @default.
- W3104955410 hasConceptScore W3104955410C524204448 @default.
- W3104955410 hasConceptScore W3104955410C539667460 @default.
- W3104955410 hasConceptScore W3104955410C545542383 @default.
- W3104955410 hasConceptScore W3104955410C71924100 @default.
- W3104955410 hasConceptScore W3104955410C84525736 @default.
- W3104955410 hasIssue "22" @default.
- W3104955410 hasLocation W31049554101 @default.
- W3104955410 hasLocation W31049554102 @default.
- W3104955410 hasLocation W31049554103 @default.