Matches in SemOpenAlex for { <https://semopenalex.org/work/W3105177515> ?p ?o ?g. }
- W3105177515 endingPage "3722" @default.
- W3105177515 startingPage "3722" @default.
- W3105177515 abstract "Automatic discrimination of tree species and identification of physiological stress imposed on forest trees by biotic factors from unmanned aerial systems (UAS) offers substantial advantages in forest management practices. In this study, we aimed to develop a novel workflow for facilitating tree species classification and the detection of healthy, unhealthy, and dead trees caused by bark beetle infestation using ultra-high resolution 5-band UAS bi-temporal aerial imagery in the Czech Republic. The study is divided into two steps. We initially classified the tree type, either as broadleaf or conifer, and we then classified trees according to the tree type and health status, and subgroups were created to further classify trees (detailed classification). Photogrammetric processed datasets achieved by the use of structure-from-motion (SfM) imaging technique, where resulting digital terrain models (DTMs), digital surface models (DSMs), and orthophotos with a resolution of 0.05 m were utilized as input for canopy spectral analysis, as well as texture analysis (TA). For the spectral analysis, nine vegetation indices (VIs) were applied to evaluate the amount of vegetation cover change of canopy surface between the two seasons, spring and summer of 2019. Moreover, 13 TA variables, including Mean, Variance, Entropy, Contrast, Heterogeneity, Homogeneity, Angular Second Moment, Correlation, Gray-level Difference Vector (GLDV) Angular Second Moment, GLDV Entropy, GLDV Mean, GLDV Contrast, and Inverse Difference, were estimated for the extraction of canopy surface texture. Further, we used the support vector machine (SVM) algorithm to conduct a detailed classification of tree species and health status. Our results highlighted the efficiency of the proposed method for tree species classification with an overall accuracy (OA) of 81.18% (Kappa: 0.70) and health status assessment with an OA of 84.71% (Kappa: 0.66). While SVM proved to be a good classifier, the results also showed that a combination of VI and TA layers increased the OA by 4.24%, providing a new dimension of information derived from UAS platforms. These methods could be used to quickly evaluate large areas that have been impacted by biological disturbance agents for mapping and detection, tree inventory, and evaluating habitat conditions at relatively low costs." @default.
- W3105177515 created "2020-11-23" @default.
- W3105177515 creator A5010215522 @default.
- W3105177515 creator A5062879036 @default.
- W3105177515 date "2020-11-12" @default.
- W3105177515 modified "2023-10-16" @default.
- W3105177515 title "Tree Species Classification and Health Status Assessment for a Mixed Broadleaf-Conifer Forest with UAS Multispectral Imaging" @default.
- W3105177515 cites W191808681 @default.
- W3105177515 cites W1928585742 @default.
- W3105177515 cites W1964217023 @default.
- W3105177515 cites W1970535395 @default.
- W3105177515 cites W1985007599 @default.
- W3105177515 cites W1987097445 @default.
- W3105177515 cites W1994499934 @default.
- W3105177515 cites W1998441542 @default.
- W3105177515 cites W2002242696 @default.
- W3105177515 cites W2008233110 @default.
- W3105177515 cites W2011475440 @default.
- W3105177515 cites W2015493064 @default.
- W3105177515 cites W2022133743 @default.
- W3105177515 cites W2025097322 @default.
- W3105177515 cites W2031126473 @default.
- W3105177515 cites W2034085189 @default.
- W3105177515 cites W2039067795 @default.
- W3105177515 cites W2046600498 @default.
- W3105177515 cites W2052256290 @default.
- W3105177515 cites W2063907334 @default.
- W3105177515 cites W2066416082 @default.
- W3105177515 cites W2077707413 @default.
- W3105177515 cites W2078619499 @default.
- W3105177515 cites W2082081125 @default.
- W3105177515 cites W2084291846 @default.
- W3105177515 cites W2097337758 @default.
- W3105177515 cites W2109006150 @default.
- W3105177515 cites W2111443246 @default.
- W3105177515 cites W2111947859 @default.
- W3105177515 cites W2125230412 @default.
- W3105177515 cites W2128438912 @default.
- W3105177515 cites W2129201358 @default.
- W3105177515 cites W2136251662 @default.
- W3105177515 cites W2137608957 @default.
- W3105177515 cites W2139212933 @default.
- W3105177515 cites W2148115499 @default.
- W3105177515 cites W2150853404 @default.
- W3105177515 cites W2154714869 @default.
- W3105177515 cites W2156419436 @default.
- W3105177515 cites W2157653924 @default.
- W3105177515 cites W2160155099 @default.
- W3105177515 cites W2163410149 @default.
- W3105177515 cites W2169640065 @default.
- W3105177515 cites W2178471458 @default.
- W3105177515 cites W2192067621 @default.
- W3105177515 cites W2235215170 @default.
- W3105177515 cites W2329061269 @default.
- W3105177515 cites W2405365025 @default.
- W3105177515 cites W2514830628 @default.
- W3105177515 cites W2515306179 @default.
- W3105177515 cites W2560462200 @default.
- W3105177515 cites W2563201381 @default.
- W3105177515 cites W2606093983 @default.
- W3105177515 cites W2618708155 @default.
- W3105177515 cites W2735448406 @default.
- W3105177515 cites W2743601682 @default.
- W3105177515 cites W2751262706 @default.
- W3105177515 cites W2787179005 @default.
- W3105177515 cites W2793342868 @default.
- W3105177515 cites W2886384139 @default.
- W3105177515 cites W2948027403 @default.
- W3105177515 cites W295064753 @default.
- W3105177515 cites W2953411856 @default.
- W3105177515 cites W2978030930 @default.
- W3105177515 doi "https://doi.org/10.3390/rs12223722" @default.
- W3105177515 hasPublicationYear "2020" @default.
- W3105177515 type Work @default.
- W3105177515 sameAs 3105177515 @default.
- W3105177515 citedByCount "28" @default.
- W3105177515 countsByYear W31051775152021 @default.
- W3105177515 countsByYear W31051775152022 @default.
- W3105177515 countsByYear W31051775152023 @default.
- W3105177515 crossrefType "journal-article" @default.
- W3105177515 hasAuthorship W3105177515A5010215522 @default.
- W3105177515 hasAuthorship W3105177515A5062879036 @default.
- W3105177515 hasBestOaLocation W31051775151 @default.
- W3105177515 hasConcept C101000010 @default.
- W3105177515 hasConcept C12267149 @default.
- W3105177515 hasConcept C154945302 @default.
- W3105177515 hasConcept C169258074 @default.
- W3105177515 hasConcept C173163844 @default.
- W3105177515 hasConcept C18903297 @default.
- W3105177515 hasConcept C205649164 @default.
- W3105177515 hasConcept C2778142624 @default.
- W3105177515 hasConcept C39432304 @default.
- W3105177515 hasConcept C41008148 @default.
- W3105177515 hasConcept C62649853 @default.
- W3105177515 hasConcept C82789328 @default.
- W3105177515 hasConcept C86803240 @default.
- W3105177515 hasConceptScore W3105177515C101000010 @default.
- W3105177515 hasConceptScore W3105177515C12267149 @default.