Matches in SemOpenAlex for { <https://semopenalex.org/work/W3105178283> ?p ?o ?g. }
- W3105178283 endingPage "6535" @default.
- W3105178283 startingPage "6535" @default.
- W3105178283 abstract "To further extend the applicability of wearable sensors in various domains such as mobile health systems and the automotive industry, new methods for accurately extracting subtle physiological information from these wearable sensors are required. However, the extraction of valuable information from physiological signals is still challenging—smartphones can count steps and compute heart rate, but they cannot recognize emotions and related affective states. This study analyzes the possibility of using end-to-end multimodal deep learning (DL) methods for affect recognition. Ten end-to-end DL architectures are compared on four different datasets with diverse raw physiological signals used for affect recognition, including emotional and stress states. The DL architectures specialized for time-series classification were enhanced to simultaneously facilitate learning from multiple sensors, each having their own sampling frequency. To enable fair comparison among the different DL architectures, Bayesian optimization was used for hyperparameter tuning. The experimental results showed that the performance of the models depends on the intensity of the physiological response induced by the affective stimuli, i.e., the DL models recognize stress induced by the Trier Social Stress Test more successfully than they recognize emotional changes induced by watching affective content, e.g., funny videos. Additionally, the results showed that the CNN-based architectures might be more suitable than LSTM-based architectures for affect recognition from physiological sensors." @default.
- W3105178283 created "2020-11-23" @default.
- W3105178283 creator A5037458079 @default.
- W3105178283 creator A5043270761 @default.
- W3105178283 creator A5043419128 @default.
- W3105178283 creator A5049612210 @default.
- W3105178283 creator A5057916549 @default.
- W3105178283 date "2020-11-16" @default.
- W3105178283 modified "2023-10-13" @default.
- W3105178283 title "Can We Ditch Feature Engineering? End-to-End Deep Learning for Affect Recognition from Physiological Sensor Data" @default.
- W3105178283 cites W1560157848 @default.
- W3105178283 cites W1982149796 @default.
- W3105178283 cites W2002055708 @default.
- W3105178283 cites W2029334490 @default.
- W3105178283 cites W2077697924 @default.
- W3105178283 cites W2103184652 @default.
- W3105178283 cites W2128246772 @default.
- W3105178283 cites W2130175312 @default.
- W3105178283 cites W2144961120 @default.
- W3105178283 cites W2171801645 @default.
- W3105178283 cites W2257979135 @default.
- W3105178283 cites W2339614434 @default.
- W3105178283 cites W2547146855 @default.
- W3105178283 cites W2565944610 @default.
- W3105178283 cites W2590053392 @default.
- W3105178283 cites W2742338588 @default.
- W3105178283 cites W2884001105 @default.
- W3105178283 cites W2890014048 @default.
- W3105178283 cites W2892035503 @default.
- W3105178283 cites W2898242330 @default.
- W3105178283 cites W2919854899 @default.
- W3105178283 cites W2947878839 @default.
- W3105178283 cites W2974457857 @default.
- W3105178283 cites W2982316857 @default.
- W3105178283 cites W2984017204 @default.
- W3105178283 cites W2997026866 @default.
- W3105178283 cites W2997412243 @default.
- W3105178283 cites W3015948701 @default.
- W3105178283 cites W3019253063 @default.
- W3105178283 cites W3033146535 @default.
- W3105178283 cites W4205947740 @default.
- W3105178283 doi "https://doi.org/10.3390/s20226535" @default.
- W3105178283 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7697590" @default.
- W3105178283 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33207564" @default.
- W3105178283 hasPublicationYear "2020" @default.
- W3105178283 type Work @default.
- W3105178283 sameAs 3105178283 @default.
- W3105178283 citedByCount "21" @default.
- W3105178283 countsByYear W31051782832021 @default.
- W3105178283 countsByYear W31051782832022 @default.
- W3105178283 countsByYear W31051782832023 @default.
- W3105178283 crossrefType "journal-article" @default.
- W3105178283 hasAuthorship W3105178283A5037458079 @default.
- W3105178283 hasAuthorship W3105178283A5043270761 @default.
- W3105178283 hasAuthorship W3105178283A5043419128 @default.
- W3105178283 hasAuthorship W3105178283A5049612210 @default.
- W3105178283 hasAuthorship W3105178283A5057916549 @default.
- W3105178283 hasBestOaLocation W31051782831 @default.
- W3105178283 hasConcept C104317684 @default.
- W3105178283 hasConcept C108583219 @default.
- W3105178283 hasConcept C119857082 @default.
- W3105178283 hasConcept C121687571 @default.
- W3105178283 hasConcept C138885662 @default.
- W3105178283 hasConcept C149635348 @default.
- W3105178283 hasConcept C150594956 @default.
- W3105178283 hasConcept C153180895 @default.
- W3105178283 hasConcept C154945302 @default.
- W3105178283 hasConcept C15744967 @default.
- W3105178283 hasConcept C185592680 @default.
- W3105178283 hasConcept C2776035688 @default.
- W3105178283 hasConcept C2776401178 @default.
- W3105178283 hasConcept C2778597338 @default.
- W3105178283 hasConcept C2778827112 @default.
- W3105178283 hasConcept C41008148 @default.
- W3105178283 hasConcept C41895202 @default.
- W3105178283 hasConcept C46312422 @default.
- W3105178283 hasConcept C52622490 @default.
- W3105178283 hasConcept C54290928 @default.
- W3105178283 hasConcept C55493867 @default.
- W3105178283 hasConcept C6438553 @default.
- W3105178283 hasConcept C78604142 @default.
- W3105178283 hasConcept C8642999 @default.
- W3105178283 hasConceptScore W3105178283C104317684 @default.
- W3105178283 hasConceptScore W3105178283C108583219 @default.
- W3105178283 hasConceptScore W3105178283C119857082 @default.
- W3105178283 hasConceptScore W3105178283C121687571 @default.
- W3105178283 hasConceptScore W3105178283C138885662 @default.
- W3105178283 hasConceptScore W3105178283C149635348 @default.
- W3105178283 hasConceptScore W3105178283C150594956 @default.
- W3105178283 hasConceptScore W3105178283C153180895 @default.
- W3105178283 hasConceptScore W3105178283C154945302 @default.
- W3105178283 hasConceptScore W3105178283C15744967 @default.
- W3105178283 hasConceptScore W3105178283C185592680 @default.
- W3105178283 hasConceptScore W3105178283C2776035688 @default.
- W3105178283 hasConceptScore W3105178283C2776401178 @default.
- W3105178283 hasConceptScore W3105178283C2778597338 @default.
- W3105178283 hasConceptScore W3105178283C2778827112 @default.
- W3105178283 hasConceptScore W3105178283C41008148 @default.