Matches in SemOpenAlex for { <https://semopenalex.org/work/W3105205770> ?p ?o ?g. }
- W3105205770 endingPage "100334" @default.
- W3105205770 startingPage "100334" @default.
- W3105205770 abstract "Morphological classification is a key piece of information to define samples of galaxies aiming to study the large-scale structure of the universe. In essence, the challenge is to build up a robust methodology to perform a reliable morphological estimate from galaxy images. Here, we investigate how to substantially improve the galaxy classification within large datasets by mimicking human classification. We combine accurate visual classifications from the Galaxy Zoo project with machine and deep learning methodologies. We propose two distinct approaches for galaxy morphology: one based on non-parametric morphology and traditional machine learning algorithms; and another based on Deep Learning. To measure the input features for the traditional machine learning methodology, we have developed a system called CyMorph, with a novel non-parametric approach to study galaxy morphology. The main datasets employed comes from the Sloan Digital Sky Survey Data Release 7 (SDSS-DR7). We also discuss the class imbalance problem considering three classes. Performance of each model is mainly measured by Overall Accuracy (OA). A spectroscopic validation with astrophysical parameters is also provided for Decision Tree models to assess the quality of our morphological classification. In all of our samples, both Deep and Traditional Machine Learning approaches have over 94.5% OA to classify galaxies in two classes (elliptical and spiral). We compare our classification with state-of-the-art morphological classification from literature. Considering only two classes separation, we achieve 99% of overall accuracy in average when using our deep learning models, and 82% when using three classes. We provide a catalog with 670,560 galaxies containing our best results, including morphological metrics and classification." @default.
- W3105205770 created "2020-11-23" @default.
- W3105205770 creator A5027234818 @default.
- W3105205770 creator A5030018784 @default.
- W3105205770 creator A5033504247 @default.
- W3105205770 creator A5036698110 @default.
- W3105205770 creator A5044846349 @default.
- W3105205770 creator A5046126263 @default.
- W3105205770 creator A5057392530 @default.
- W3105205770 creator A5058848139 @default.
- W3105205770 creator A5064135000 @default.
- W3105205770 creator A5088347017 @default.
- W3105205770 date "2020-01-01" @default.
- W3105205770 modified "2023-10-06" @default.
- W3105205770 title "Machine and Deep Learning applied to galaxy morphology - A comparative study" @default.
- W3105205770 cites W1924655545 @default.
- W3105205770 cites W1970517322 @default.
- W3105205770 cites W2008056655 @default.
- W3105205770 cites W2023037133 @default.
- W3105205770 cites W2032674235 @default.
- W3105205770 cites W2044738244 @default.
- W3105205770 cites W2052500608 @default.
- W3105205770 cites W2057130369 @default.
- W3105205770 cites W2058379217 @default.
- W3105205770 cites W2061959687 @default.
- W3105205770 cites W2068389942 @default.
- W3105205770 cites W2068464384 @default.
- W3105205770 cites W2070808135 @default.
- W3105205770 cites W2070902649 @default.
- W3105205770 cites W2093868759 @default.
- W3105205770 cites W2097117768 @default.
- W3105205770 cites W2112193291 @default.
- W3105205770 cites W2113930045 @default.
- W3105205770 cites W2114348703 @default.
- W3105205770 cites W2117539524 @default.
- W3105205770 cites W2123744714 @default.
- W3105205770 cites W2124324031 @default.
- W3105205770 cites W2138898516 @default.
- W3105205770 cites W2139927406 @default.
- W3105205770 cites W2142238829 @default.
- W3105205770 cites W2153037851 @default.
- W3105205770 cites W2155653793 @default.
- W3105205770 cites W2158755244 @default.
- W3105205770 cites W2194775991 @default.
- W3105205770 cites W2227274187 @default.
- W3105205770 cites W2756077511 @default.
- W3105205770 cites W2768455873 @default.
- W3105205770 cites W2795285908 @default.
- W3105205770 cites W3100220540 @default.
- W3105205770 cites W3100901804 @default.
- W3105205770 cites W3101710808 @default.
- W3105205770 cites W4236137412 @default.
- W3105205770 cites W4239510810 @default.
- W3105205770 cites W4293238452 @default.
- W3105205770 doi "https://doi.org/10.1016/j.ascom.2019.100334" @default.
- W3105205770 hasPublicationYear "2020" @default.
- W3105205770 type Work @default.
- W3105205770 sameAs 3105205770 @default.
- W3105205770 citedByCount "56" @default.
- W3105205770 countsByYear W31052057702019 @default.
- W3105205770 countsByYear W31052057702020 @default.
- W3105205770 countsByYear W31052057702021 @default.
- W3105205770 countsByYear W31052057702022 @default.
- W3105205770 countsByYear W31052057702023 @default.
- W3105205770 crossrefType "journal-article" @default.
- W3105205770 hasAuthorship W3105205770A5027234818 @default.
- W3105205770 hasAuthorship W3105205770A5030018784 @default.
- W3105205770 hasAuthorship W3105205770A5033504247 @default.
- W3105205770 hasAuthorship W3105205770A5036698110 @default.
- W3105205770 hasAuthorship W3105205770A5044846349 @default.
- W3105205770 hasAuthorship W3105205770A5046126263 @default.
- W3105205770 hasAuthorship W3105205770A5057392530 @default.
- W3105205770 hasAuthorship W3105205770A5058848139 @default.
- W3105205770 hasAuthorship W3105205770A5064135000 @default.
- W3105205770 hasAuthorship W3105205770A5088347017 @default.
- W3105205770 hasBestOaLocation W31052057702 @default.
- W3105205770 hasConcept C108583219 @default.
- W3105205770 hasConcept C119857082 @default.
- W3105205770 hasConcept C121332964 @default.
- W3105205770 hasConcept C154945302 @default.
- W3105205770 hasConcept C41008148 @default.
- W3105205770 hasConcept C44870925 @default.
- W3105205770 hasConcept C84525736 @default.
- W3105205770 hasConcept C98444146 @default.
- W3105205770 hasConceptScore W3105205770C108583219 @default.
- W3105205770 hasConceptScore W3105205770C119857082 @default.
- W3105205770 hasConceptScore W3105205770C121332964 @default.
- W3105205770 hasConceptScore W3105205770C154945302 @default.
- W3105205770 hasConceptScore W3105205770C41008148 @default.
- W3105205770 hasConceptScore W3105205770C44870925 @default.
- W3105205770 hasConceptScore W3105205770C84525736 @default.
- W3105205770 hasConceptScore W3105205770C98444146 @default.
- W3105205770 hasFunder F4320320997 @default.
- W3105205770 hasFunder F4320321091 @default.
- W3105205770 hasLocation W31052057701 @default.
- W3105205770 hasLocation W31052057702 @default.
- W3105205770 hasOpenAccess W3105205770 @default.
- W3105205770 hasPrimaryLocation W31052057701 @default.