Matches in SemOpenAlex for { <https://semopenalex.org/work/W3105217250> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W3105217250 endingPage "121183" @default.
- W3105217250 startingPage "121183" @default.
- W3105217250 abstract "Phishing websites distribute unsolicited content and are frequently used to commit email and internet fraud; detecting them before any user information is submitted is critical. Several efforts have been made to detect these phishing websites in recent years. Most existing approaches use hand-crafted lexical and statistical features from a website’s textual content to train classification models to detect phishing web pages. However, these phishing detection approaches have a few challenges, including (1) the tediousness of extracting hand-crafted features, which require specialized domain knowledge to determine which features are useful for a particular platform; and (2) the difficulties encountered by models built on hand-crafted features to capture the semantic patterns in words and characters in URL and HTML content. To address these challenges, this paper proposes WebPhish, an end-to-end deep neural network trained using embedded raw URLs and HTML content to detect website phishing attacks. First, the proposed model automatically employs an embedding technique to extract the corresponding characters into homologous dense vectors. Then, the concatenation layer merges the URL and HTML embedding matrices. Following that, Convolutional layers are used to model its semantic dependencies. Extensive experiments were conducted with real-world phishing data, which yielded an accuracy of 98.1%, showing that WebPhish outperforms baseline detection approaches in identifying phishing pages." @default.
- W3105217250 created "2020-11-23" @default.
- W3105217250 creator A5030143685 @default.
- W3105217250 creator A5057003255 @default.
- W3105217250 creator A5083707253 @default.
- W3105217250 date "2024-02-01" @default.
- W3105217250 modified "2023-09-26" @default.
- W3105217250 title "Look before you leap: Detecting phishing web pages by exploiting raw URL and HTML characteristics" @default.
- W3105217250 cites W2046603953 @default.
- W3105217250 cites W2061519013 @default.
- W3105217250 cites W2076063813 @default.
- W3105217250 cites W2079262069 @default.
- W3105217250 cites W2097958165 @default.
- W3105217250 cites W2131906261 @default.
- W3105217250 cites W2134750673 @default.
- W3105217250 cites W2139565456 @default.
- W3105217250 cites W2156279557 @default.
- W3105217250 cites W2297844173 @default.
- W3105217250 cites W2414538037 @default.
- W3105217250 cites W2776313266 @default.
- W3105217250 cites W2783033852 @default.
- W3105217250 cites W2802787326 @default.
- W3105217250 cites W2886377174 @default.
- W3105217250 cites W2888558158 @default.
- W3105217250 cites W2899992227 @default.
- W3105217250 cites W2914801588 @default.
- W3105217250 cites W2919115771 @default.
- W3105217250 cites W2971561269 @default.
- W3105217250 cites W2975388328 @default.
- W3105217250 cites W2988412621 @default.
- W3105217250 cites W3048764235 @default.
- W3105217250 cites W3126529034 @default.
- W3105217250 cites W4206428177 @default.
- W3105217250 cites W4281483860 @default.
- W3105217250 doi "https://doi.org/10.1016/j.eswa.2023.121183" @default.
- W3105217250 hasPublicationYear "2024" @default.
- W3105217250 type Work @default.
- W3105217250 sameAs 3105217250 @default.
- W3105217250 citedByCount "1" @default.
- W3105217250 countsByYear W31052172502021 @default.
- W3105217250 crossrefType "journal-article" @default.
- W3105217250 hasAuthorship W3105217250A5030143685 @default.
- W3105217250 hasAuthorship W3105217250A5057003255 @default.
- W3105217250 hasAuthorship W3105217250A5083707253 @default.
- W3105217250 hasBestOaLocation W31052172501 @default.
- W3105217250 hasConcept C110875604 @default.
- W3105217250 hasConcept C134306372 @default.
- W3105217250 hasConcept C136764020 @default.
- W3105217250 hasConcept C154945302 @default.
- W3105217250 hasConcept C21959979 @default.
- W3105217250 hasConcept C23123220 @default.
- W3105217250 hasConcept C33923547 @default.
- W3105217250 hasConcept C36503486 @default.
- W3105217250 hasConcept C41008148 @default.
- W3105217250 hasConcept C83860907 @default.
- W3105217250 hasConceptScore W3105217250C110875604 @default.
- W3105217250 hasConceptScore W3105217250C134306372 @default.
- W3105217250 hasConceptScore W3105217250C136764020 @default.
- W3105217250 hasConceptScore W3105217250C154945302 @default.
- W3105217250 hasConceptScore W3105217250C21959979 @default.
- W3105217250 hasConceptScore W3105217250C23123220 @default.
- W3105217250 hasConceptScore W3105217250C33923547 @default.
- W3105217250 hasConceptScore W3105217250C36503486 @default.
- W3105217250 hasConceptScore W3105217250C41008148 @default.
- W3105217250 hasConceptScore W3105217250C83860907 @default.
- W3105217250 hasFunder F4320335413 @default.
- W3105217250 hasLocation W31052172501 @default.
- W3105217250 hasLocation W31052172502 @default.
- W3105217250 hasOpenAccess W3105217250 @default.
- W3105217250 hasPrimaryLocation W31052172501 @default.
- W3105217250 hasRelatedWork W2036147130 @default.
- W3105217250 hasRelatedWork W2051135816 @default.
- W3105217250 hasRelatedWork W2081721100 @default.
- W3105217250 hasRelatedWork W2334018835 @default.
- W3105217250 hasRelatedWork W3192861468 @default.
- W3105217250 hasRelatedWork W4200455316 @default.
- W3105217250 hasRelatedWork W4324118121 @default.
- W3105217250 hasRelatedWork W564884363 @default.
- W3105217250 hasRelatedWork W582605872 @default.
- W3105217250 hasRelatedWork W2592441986 @default.
- W3105217250 hasVolume "236" @default.
- W3105217250 isParatext "false" @default.
- W3105217250 isRetracted "false" @default.
- W3105217250 magId "3105217250" @default.
- W3105217250 workType "article" @default.